Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 19: 100847, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780298

RESUMO

Dietary vegetables rich in bioactive compounds are major responsible for promoting human health. Herein, the effect of hydrogen peroxide (H2O2), an important signaling compound, on growth and quality of two hydroponic lettuce genotypes was investigated. The maximum enhancement of growth traits was shown in lettuce elicited with 10 mmol/L H2O2, while 40 mmol/L H2O2 significantly reduced above growth traits. H2O2 elicitation increased pigment contents and photosynthetic process, which consequently caused enhancements of phenolic compounds, ascorbic acid, glutathione, carotenoids, soluble sugars, free amino acids, soluble protein, minerals, and antioxidant capacity, while above alterations appeared in a genotype-dependent manner. The phenolic accumulation was correlated with improved activity of phenylalanine ammonia lyase (PAL) and expression levels of genes related to phenolic biosynthesis, including PAL, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol-4 reductase, and UDP-glucose: flavonoid 3-O-glucosyltransferase. Therefore, elicitation with H2O2 is a promising strategy to develop lettuce with high bioactive compounds and biomass.

2.
Sci Total Environ ; 885: 163962, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37149197

RESUMO

Overuse of fertilizers and irrigation and continuous monocropping is increasingly jeopardizing vegetable production in solar greenhouses as it causes serious soil degradation and the spread of soil-borne diseases. As a countermeasure, the practice of anaerobic soil disinfestation (ASD) has been recently introduced, which is carried out during the summer fallow period. However, ASD may increase N leaching and greenhouse gas (GHG) emissions when large amounts of chicken manure are applied. This study assesses how the use of different amounts of chicken manure (CM) combined with rice shells (RS) or maize straw (MS) affects soil O2 availability, N leaching, and GHG emissions during and following the ASD period. Application of RS or MS alone effectively stimulated long-lasting soil anaerobiosis without major stimulating effects on N2O emissions and N leaching. Seasonal N leaching and N2O emissions were in the ranges of 144-306 and 3-44 kg N ha-1, respectively, and were strongly increasing with increasing rates of manure application. Combining high rates of manure application with the additional incorporation of crop residues further increased N2O emissions by 56 %-90 % as compared to the standard practice of farmers (1200 kg N ha-1 CM). About 56 %-91 % of seasonal N2O emissions occurred during the ASD period, whereas N leaching mainly occurred in the cropping period (75 %-100 %). Our study shows, that for priming ASD incorporation of crop residue is sufficient and that the addition of chicken manure for ASD is not needed and should be reduced or even prohibited as it does not improve yields but stimulates the emission of the strong GHG N2O.

3.
Food Chem X ; 16: 100481, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36299865

RESUMO

Reduced nitrogen availability is an efficient strategy for increasing the accumulation of phenolic compounds in vegetables, but related mechanisms remain unknown. Here, the production of hydrogen peroxide (H2O2) and its potential roles in regulating phenolic biosynthesis and enhancing the antioxidant quality of lettuce under low nitrogen (LN) conditions were investigated. The LN treatment caused a rapid production of H2O2, which effectively increased lettuce quality by enhancing the levels of phenolic compounds and other nutrients such as ascorbic acid, glutathione, soluble sugar, and soluble protein. The increased phenolic content was related to the higher expression levels of phenolic biosynthesis genes, including PAL, CHS, DFR, F35H, and UFGT, and higher photosynthetic capacity after H2O2 addition under LN conditions. However, these positive effects were suppressed by dimethylthiourea (DMTU), a scavenger of H2O2. These results suggest that H2O2 as an important signal molecular mediates the LN-caused phenolic accumulation and antioxidant quality enhancement in lettuce.

4.
Plant Cell Rep ; 41(11): 2173-2186, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35974188

RESUMO

KEY MESSAGE: Seed priming with pig blood protein hydrolysate improves tomato seed germination and seedling growth via regulation of reserve mobilization, osmotic adjustment, and antioxidant mechanism under drought conditions. Protein hydrolysates obtained from agro-industrial byproducts are widely recognized because of their positive roles in regulating plant responses to environmental stresses. However, little is known regarding the roles of animal protein hydrolysates in mediating seed drought tolerance and its underlying mechanisms. This study investigated the potential effects of seed priming on tomato seed germination and seedling growth under PEG-induced drought stress using protein hydrolysates derived from pig blood (PP). PP priming effectively alleviated the drought-induced reduction in seed germination traits, resulting in improved tomato seedling growth. PP priming enhanced the gene expressions and activities of amylase and sucrose synthase and soluble sugar, soluble protein, and free amino acid levels, thereby promoting reserve mobilization in seeds. PP priming also reduced osmotic toxicity through increased accumulations of proline, soluble protein, and soluble sugar. Drought stress substantially enhanced reactive oxygen species production and the subsequent increases in malondialdehyde levels and Evans blue solution uptake, which were substantially alleviated after PP priming via the improved activities of enzymatic and non-enzymatic antioxidants. Moreover, the increased DPPH free radical scavenging capacity and ferric reducing antioxidant power indicated that PP-treated tomato seedings had high antioxidant activities under drought stress. Therefore, PP priming is a novel, promising, and practicable method for improving tomato seed germination and seedling growth under drought stress.


Assuntos
Secas , Solanum lycopersicum , Suínos , Animais , Sementes , Germinação , Antioxidantes/metabolismo , Hidrolisados de Proteína/farmacologia , Plântula , Estresse Fisiológico , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Açúcares
5.
Environ Pollut ; 308: 119616, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700878

RESUMO

Excessive fertilization leads to high nitrogen (N) leaching under intensive plastic-shed vegetable production systems, and thereby results in the contaminations of ground or surface water. Therefore, it is urgent to develop cost-effective strategies of nitrogen management to overcome these obstacles. A 15-year experiment in annual double-cropping systems was conducted to explore impacts of N application rate and straw amendment on mineral N leaching loss in plastic-shed greenhouse. The results showed that seasonal mineral N leaching was up to 103.4-603.4 kg N ha-1, accounting for 12%-41% of total N input under conventional N fertilization management. However, optimized N application rates by 47% and straw addition obviously decreased mineral N leaching by 4%-86%, while had no negative impacts on N uptake and tomato yields. These large decreases of N leaching loss were mainly due to the reduced leachate amount and followed by N concentration in leachate, which was supported by improved soil water holding capacity after optimizing N application rates and straw addition. On average, 52% of water leachate and 55% of mineral N leaching simultaneously occurred within 40 days after planting, further indicating the dominant role of water leakage in regulating mineral N leaching loss. Moreover, decreasing mineral N leaching was beneficial for reducing leaching loss of base cations. Therefore, optimized N application rates and straw amendment effectively alleviates mineral N leaching losses mainly by controlling the water leakage without yield loss in plastic-shed greenhouse, making this strategy promising and interesting from environmental and economical viewpoints.


Assuntos
Fertilizantes , Nitrogênio , Agricultura/métodos , Fertilizantes/análise , Minerais , Nitrogênio/análise , Plásticos , Solo , Verduras , Água
6.
Environ Pollut ; 307: 119494, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35597485

RESUMO

Although greenhouse vegetable production in China is rapidly changing, consumers are concerned about food quality and safety. Studies have shown that greenhouse soils are highly eutrophicated and potentially contaminated by heavy metals. However, to date, no regional study has assessed whether greenhouse soils differ significantly in their heavy metal and nutrient loads compared to adjacent arable land. Our study was conducted in Shouguang County, a key region of greenhouse vegetable production in China. Soil samples down to soil depths of 3 m were taken from 60 greenhouse vegetable fields of three different ages (5, 10, and 20 years) and from 20 adjacent arable fields to analyze the concentrations of heavy metals, nutrients, and soil physio-chemical parameters. A comparison of greenhouse soils with adjacent arable fields revealed that for greenhouses, (a) micro (heavy metals: Cu, Zn, and Mn) and macronutrients (Nmin, Olsen-P, available K) were significantly higher by a factor of about five, (b) N:P:K ratios were significantly imbalanced towards P and K, and (c) topsoil (0-30 cm) concentrations of the above-mentioned micro- and macronutrients increased with years of vegetable cultivation. In contrast, the soil concentrations of the heavy metals Cr and Pb were lower in greenhouse soils. Heavy metal concentrations did not vary significantly with soil depth, except for the micronutrients Cu and Zn, which were between 1- and 3-fold higher in the topsoil (0-30 cm) than in the subsoil (30-300 cm). The Nemerow pollution index (PN) was 0.37, which was below the recommended environmental threshold value (PN < 1). Structural equation model analysis revealed that soil nutrient concentrations in greenhouse soils are directly related to the input of fertilizers and agrochemicals. Lower values of soil Pb and Cr concentrations in greenhouses were due to the sheltering effect of the greenhouse roof, which protected soils from atmospheric deposition due to emissions from nearby industrial complexes.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Chumbo/análise , Metais Pesados/análise , Nutrientes/análise , Medição de Risco , Solo/química , Poluentes do Solo/análise , Verduras/química
7.
Sci Total Environ ; 830: 154673, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35314244

RESUMO

Greenhouse vegetable production (GVP) systems in China receive excessive amounts of fertilizers (>1500 kg N ha-1 yr-1) and irrigation (>1200 mm yr-1), which results in severe soil degradation. Moreover, soil borne diseases are common as the same crop is planted continuously over years. Anaerobic soil disinfestation (ASD) is a method carried out every 3-4 years during the summer fallow period to combat soil-borne diseases and to improve soil health. The standard ASD practice, which is carried out before the cropping season, involves incorporation of organic matter (i.e. rice shells or straw) into the soil, covering of the soil with plastic films and soil irrigation until saturation. However, many farmers incorporate large amounts of organic nitrogen fertilizer for priming ASD. In this study, we investigated if incorporation of rice shells plus chicken manure (ASD+RM; farmers practice) provokes higher environmental N losses (N2O emissions and N leaching) during the ASD and the following tomato crop growing period as compared to the standard ASD practice (ASD+R: only rice shells) or a Control (fallow, but with incorporation of organic manure, standard in non-ASD years). Results showed that ASD+RM increased seasonal (ASD/fallow period plus tomato crop growing period) soil N2O emissions by a factor of 3 (ASD+RM: 14.1 kg N2O-N ha-1; ASD+R: 4.7 kg N2O-N ha-1), with 2/3 of emissions occurring during the 25 days long ASD period. Across all treatments, nitrate (NO3-) leaching dominated total N leaching (75%), with significantly lower rates observed for ASD+R as compared to ASD+RM. For both ASD treatments, total dissolved organic nitrogen (DON) leaching was a factor of two higher than for the Control. Crop productivity was not affected by ASD. Our findings imply that ASD+RM should be abandoned as the additional supply of manure N results in high environmental N losses without further increasing yields.


Assuntos
Oryza , Solo , Agricultura/métodos , Anaerobiose , China , Produtos Agrícolas , Fertilizantes/análise , Esterco , Nitrogênio/análise , Óxido Nitroso/análise , Estações do Ano , Verduras
8.
Sci Total Environ ; 785: 147307, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957593

RESUMO

Greenhouse vegetable production in China mostly involves excessive N fertilization and flood irrigation. This causes serious soil degradation and spreading of soil borne diseases. As a countermeasure against soil borne diseases anaerobic soil disinfestation (ASD) is applied during the summer fallow period. Current practices involve the incorporation of organic C sources, covering of the soil with plastic film and flood irrigation. However, farmers not only apply straw but also organic manure in ASD which may result in significant greenhouse gas emissions and N leaching. A field experiment was conducted in a greenhouse during the summer fallow period to test the impact of three ASD practices on soil GHG (N2O, CO2 and CH4) emissions and N leaching: 1) control (CK), bare soil, no ASD; 2) ASD without straw incorporation (ASD-S); 3) ASD plus straw incorporation (ASD+S) and 4) ASD plus straw and chicken manure incorporation (ASD+SM). Applying any form of ASD resulted in an increase in N2O emissions from approximately 1 kg N ha-1 month-1 to 10.7 (ASD)-47.0 (ASD+SM) kg N ha-1 month-1. Furthermore, N leaching from treatments of ASD ranged from 24.1-54.2 kg N ha-1 month-1, with highest values in ASD-S. However, while N leaching in ASD-S was solely in the form of NO3-, DON leaching was with approximately 12-20% a significant component of total N leaching in ASD+S and ASD+SM. Overall, ASD+SM showed the highest environmental N losses, which were dominated by N2O emissions. This highlights the need to advise farmers and policy makers to ban the incorporation of chicken manure instead of straw only during the ASD period and to optimize irrigation schemes instead of flood irrigation to reduce environmental N losses. Putting in more environmental sound ASD practices will certainly help to improve the sustainability of greenhouse vegetable production.

9.
Environ Pollut ; 273: 116521, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33508627

RESUMO

Approximately 1/3 of vegetables in China are produced in solar greenhouses. Most farmers use conventional irrigation with over fertilisation (CIF), thereby applying approximately 2000 kg N ha-1 fertiliser over two cropping seasons per year. Here, we tested the effect of drip irrigation with reduced fertilisation (DIF) combined with straw incorporation on reducing N2O emissions and nitrogen leaching from solar greenhouse vegetable production systems. Over three consecutive tomato cropping seasons, N2O emissions and nitrogen leaching were monitored in high temporal resolution, thereby producing a unique dataset. Compared to CIF, the realised drip fertigation scheme reduces N2O emission and nitrogen leaching of nitrate and dissolved organic nitrogen by approximately a factor of 5-10 (N2O-DIF: 10.3, CIF: 47.5 kg N ha-1 yr-1; N leaching-DIF: 83.6, CIF: 863 kg N ha-1 yr-1). Straw incorporation in CIF, though advantageous for soil health, resulted in pollution swapping as soil N2O emissions increased while NO3- leaching losses decreased. On the contrary, no significant negative environmental N effects of straw incorporation were found for DIF. As crop productivity was not affected by straw incorporation, neither for CIF nor for DIF, our study provides a sound basis for policy advice to recommend farmers to adopt drip fertigation combined with straw application. Wide scale adoption of this technique will result in reductions of environment N losses, alleviate major soil degradation signs, including soil acidity, nutrient imbalance and deterioration of soil microbial community structure, while allowing to maintaining high yields of vegetables in solar greenhouse production systems.

10.
Environ Pollut ; 245: 694-701, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30500748

RESUMO

Vegetable production in solar greenhouses in northern China results in the excessive use of nitrogen (N) fertilizers and water via flooding irrigation. Both factors result in low N use efficiency and high environmental costs because groundwater becomes contaminated with nitrate (NO3-). Four consecutive tomato (Lycopersicum esculentum Mill.) cropping seasons were tested whether drip fertigation and/or the incorporation of maize straw (S) may significantly reduce NO3- and dissolved organic N (DON) leaching while increasing the water-use efficiency (WUE) and partial factor productivity of applied N (PFPN) of the tomatoes. The following treatments were used: ① conventional flooding irrigation with overfertilization (CIF, 900 kg N ha-1 season-1), ② CIF + S, ③ drip irrigation with optimized fertilization (DIF, 400 kg N ha-1 season-1), ④ DIF + S. We found that (1) DIF significantly increases the PFPN and WUE by 262% and 73% without compromising the yield compared with CIF, respectively. (2) For CIF, approximately 50% of the total N input was leached at a NO3-/DON ratio of approximately 2:1. (3) Compared with CIF, DIF reduced NO3- and DON leaching by 88% and 90%, respectively. Water percolation was positively correlated with N leaching (p < 0.001). (4) Straw application only reduced NO3- leaching losses in the first year and did not affect DON leaching overall, although DON leaching was increased in DIF in the first growing season. In conclusion, DIF significantly reduces NO3- and DON leaching losses by approximately 90% compared with the current farmer practice (CIF). Considering the significant DON leaching losses, which have been overlooked because previous measurements focused on NO3-, DON should be considered as a primary factor of environmental pollution in conventional solar greenhouse vegetable production systems.


Assuntos
Agricultura/métodos , Fertilizantes/análise , Água Subterrânea/química , Nitrogênio/análise , Poluentes Químicos da Água/análise , China , Nitrogênio/química , Verduras/crescimento & desenvolvimento , Verduras/metabolismo , Poluentes Químicos da Água/química , Poluição da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...