Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 619, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028813

RESUMO

BACKGROUND: The objective of this study was to reveal the flavonoid biosynthesis pathway in white (Z6), red (Z27) and black (HC4) seeds of the sweet sorghum (Sorghum bicolor) using metabolomics and transcriptomics, to identify different flavonoid metabolites, and to analyze the differentially expressed genes involved in flavonoid biosynthesis. RESULTS: We analyzed the metabolomics and transcriptomics data of sweet sorghum seeds. Six hundred and fifty-one metabolites including 171 flavonoids were identified in three samples. Integrated analysis of transcriptomics and metabolomics showed that 8 chalcone synthase genes (gene19114, gene19115, gene19116, gene19117, gene19118, gene19120, gene19122 and gene19123) involved in flavonoid biosynthesis, were identified and play central role in change of color. Six flavanone including homoeriodictyol, naringin, prunin, naringenin, hesperetin and pinocembrin were main reason for the color difference. CONCLUSIONS: Our results provide valuable information on the flavonoid metabolites and the candidate genes involved in the flavonoid biosynthesis pathway in sweet sorghum seeds.


Assuntos
Sorghum , Flavonoides , Regulação da Expressão Gênica de Plantas , Metabolômica , Sementes , Transcriptoma
2.
Environ Sci Pollut Res Int ; 25(19): 19012-19027, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29721793

RESUMO

Nicosulfuron is a post-emergence herbicide used for weed control in maize fields (Zea mays L.). Here, the pair of nearly isogenic inbred lines SN509-R (nicosulfuron resistant) and SN509-S (nicosulfuron sensitive) was used to study the effect of nicosulfuron on growth, oxidative stress, and the activity and gene expression of antioxidant enzymes in waxy maize seedlings. Nicosulfuron treatment was applied at the five-leaf stage and water treatment was used as control. After nicosulfuron treatment, the death of SN509-S might be associated with increased oxidative stress. Compared with SN509-R, higher O2·- and H2O2 accumulations were observed in SN509-S, which can severely damage lipids and proteins, thus reducing membrane stability. The effects were exacerbated with extended exposure time. Both O2·- and H2O2 detoxification is regulated by enzymes. After nicosulfuron treatment, superoxide dismutase (SOD), catalase, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione-S-transferase (GST) of SN509-S were significantly lower than those of SN509-R. Compared to SN509-R, ascorbate content (AA), glutathione (GSH) content, GSH to glutathione disulfide ratios, and AA to dehydroascorbate ratios significantly declined with increasing exposure time in SN509-S. Compared to SN509-S, nicosulfuron treatment increased the transcript levels of most of the APX genes except for APX1, and in contrast to Gst1, upregulated the transcription of sod9, MDHAR, DHAR, and GR genes in SN509-R. These results suggest that on a transcription level and in accordance with their responses, detoxifying enzymes play a vital role in the O2·- and H2O2 detoxification of maize seedlings under nicosulfuron exposure.


Assuntos
Antioxidantes/metabolismo , Herbicidas/toxicidade , Piridinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfonilureia/toxicidade , Zea mays/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , NADH NADPH Oxirredutases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Plântula/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Zea mays/enzimologia , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...