Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 333: 118391, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797377

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Parkinson's disease (PD) is the second most common neurodegenerative disorder with limited therapeutic options available. Neuroinflammation plays an important role in the occurrence and development of PD. Alkaloids extracted from Uncaria rhynchophylla (URA), have emerged as a potential neuroprotective agent because of its anti-inflammatory and anti-oxidant properties. Nevertheless, the underlying mechanism by which URA exerts neuroprotective effects in PD remains obscure. AIM OF THE STUDY: The main aim of this study was to investigate the neuroprotective effects and underlying mechanism of URA in the treatment of PD through in vivo and in vitro models, focusing on the neuroinflammation and oxidative stress pathways. MATERIALS AND METHODS: The protective effects of URA against PD were evaluated by neurobehavioral tests, immunohistochemistry, serum biochemical assays, and real-time quantitative polymerase chain reaction in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. The role of the TLR4/NF-κB/NLRP3 pathway and the Nrf2/HO-1 pathway in URA-mediated effects was examined in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells and a microglia-neuron coculture system. RESULTS: URA significantly alleviated motor deficits and dopaminergic neurotoxicity, and reversed the abnormal secretion of inflammatory and oxidative stress factors in the serum of MPTP-induced mice. URA suppressed the gene expression of Toll-like receptor 4 (TLR4), NOD-like receptor protein 3, and cyclooxygenase 2 (COX2) in the striatum of PD mice. Further studies indicated that URA inhibited activation of the TLR4/NF-κB/NLRP3 pathway and enhanced activation of the Nrf2/HO-1 pathway, reduced reactive oxygen species (ROS) production, and reversed the secretion of inflammatory mediators in LPS-stimulated BV-2 microglial cells, thereby alleviating neuroinflammatory damage to SH-SY5Y neuronal cells. CONCLUSION: URA exerted neuroprotective effects against PD mainly by the inhibition of the TLR4/NF-κB/NLRP3 pathway and activation of the Nrf2/HO-1 antioxidant pathway, highlighting URA as a promising candidate for PD treatment.

2.
Colloids Surf B Biointerfaces ; 222: 113065, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36473372

RESUMO

The aim of this study is to overcome the obstacle of the blood-brain barrier (BBB) in therapeutic drugs of Parkinson's disease (PD), like rhynchophylline (RIN) entry by intranasal administration and to solve the problem of short residence time of drugs in the nasal cavity by the dosage form design of thermosensitive gel. We first conducted a study of the screening of absorption enhancers and 3% hydroxypropyl-ß-cyclodextrin (HP-ß-CD) was effective to improve the nasal mucosal permeability of RIN. By adjusting the ratio of different components in order to make the gel with adhesion and rapid gelation which were determined to be Poloxamer 407 (P407) 20%, Poloxamer 188 (P188) 1%, polyethylene glycol 6000 (PEG-6000) 1% and HP-ß-CD 3%. In addition, the characterization showed that the thermosensitive gel was network cross-linked, rapidly gelation upon entry into the nasal cavity and was stable as semi-solid state with adhesion as well as sustained release properties. Moreover, pharmacokinetic study was performed to evaluate the bioavailability and brain targeting of RIN thermosensitive gel and which were 1.6 times and 2.1 times higher than those of oral administration. We also evaluated the anti-PD effects of RIN thermosensitive gel in-vitro as well as in-vivo. The results showed that RIN thermosensitive gel was effective in repairing the motor function impairment, dysregulated expression levels of oxidative stress factors, and positive neuronal damage within the substantia nigra and dopamine caused by PD. The constructed intranasal drug administration strategy through thermosensitive gel provided a new choice for targeted treatment of PD together with other central nervous system diseases.


Assuntos
Doença de Parkinson , Humanos , 2-Hidroxipropil-beta-Ciclodextrina , Doença de Parkinson/tratamento farmacológico , Géis/metabolismo , Temperatura , Encéfalo/metabolismo , Administração Intranasal , Poloxâmero , Sistemas de Liberação de Medicamentos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...