Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 74(4-5): 367-80, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20803312

RESUMO

In Arabidopsis thaliana, the salt overly sensitive (SOS) pathway plays an essential role in maintaining ion homeostasis and conferring salt tolerance. Here we identified three SOS components in the woody plant Populus trichocarpa, designated as PtSOS1, PtSOS2 and PtSOS3. These putative SOS genes exhibited an overlapping but distinct expression pattern in poplar plants and the transcript levels of SOS1 and SOS2 were responsive to salinity stress. In poplar mesophyll protoplasts, PtSOS1 was specifically localized in the plasma membrane, whereas PtSOS2 was distributed throughout the cell, and PtSOS3 was predominantly targeted to the plasma membrane. Heterologous expression of PtSOS1, PtSOS2 and PtSOS3 could rescue salt-sensitive phenotypes of the corresponding Arabidopsis sos mutants, demonstrating that the Populus SOS proteins are functional homologues of their Arabidopsis counterpart. In addition, PtSOS3 interacted with, and recruited PtSOS2 to the plasma membrane in yeast and in planta. Reconstitution of poplar SOS pathway in yeast cells revealed that PtSOS2 and PtSOS3 acted coordinately to activate PtSOS1. Moreover, expression of the constitutively activated form of PtSOS2 partially complemented the sos3 mutant but not sos1, suggesting that PtSOS2 functions genetically downstream of SOS3 and upstream of SOS1. These results indicate a strong functional conservation of SOS pathway responsible for salt stress signaling from herbaceous to woody plants.


Assuntos
Proteínas de Plantas/genética , Populus/genética , Tolerância ao Sal/genética , Cloreto de Sódio/metabolismo , Estresse Fisiológico , Arabidopsis/genética , Teste de Complementação Genética , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Populus/metabolismo , Populus/fisiologia , Técnicas do Sistema de Duplo-Híbrido
2.
Physiol Plant ; 136(4): 407-25, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19470090

RESUMO

Inositol polyphosphate kinases play important roles in diverse cellular processes. In this study, the function of an inositol polyphosphate kinase gene homolog named ThIPK2 from a dicotyledonous halophyte Thellungiella halophila was investigated. The deduced translation product (ThIPK2) shares 85% identity with the Arabidopsis inositol polyphosphate kinase AtIPK2beta. Transient expression of ThIPK2-YFP fusion protein in tobacco (Nicotiana tabacum) protoplasts indicates that the protein is localized to the nucleus and plasma membrane, with a minor localization to the cytosol. Heterologous expression of ThIPK2 in ipk2Delta (also known as arg82Delta), a yeast mutant strain that lacks inositol polyphosphate multikinase (Ipk2) activity, rescued the mutant's salt-, osmotic- and temperature-sensitive growth defects. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed ubiquitous expression of ThIPK2 in various tissues, including roots, rosette leaves, cauline leaves, stem, flowers and siliques, and shoot ThIPK2 transcript was strongly induced by NaCl or mannitol in T. halophila as exhibited by real-time PCR analysis. Transgenic expression of ThIPK2 in Brassica napus led to significantly improved salt-, dehydration- and oxidative stress resistance. Furthermore, the transcripts of various stress responsive marker genes increased in ThIPK2 transgenic plants under salt stress condition. These results suggest that ThIPK2 is involved in plant stress responses, and for the first time demonstrate that ThIPK2 could be a useful candidate gene for improving drought and salt tolerance in important crop plants by genetic transformation.


Assuntos
Brassica napus/enzimologia , Brassicaceae/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Brassica napus/genética , Brassicaceae/enzimologia , Desidratação/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Peróxido de Hidrogênio/farmacologia , Dados de Sequência Molecular , Estresse Oxidativo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plantas Tolerantes a Sal/enzimologia , Plantas Tolerantes a Sal/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...