Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; 4(2): 100449, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36089769

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems can be engineered as programmable transcription factors to either activate (CRISPRa) or inhibit transcription. Apomixis is extremely valuable for the seed industry in breeding clonal seeds with pure genetic backgrounds. We report here a CRISPR/dCas9-based toolkit equipped with dCas9-VP64 and MS2-p65-HSF1 effectors that may specifically target genes with high activation capability. We explored the application of in vivo CRISPRa targeting of maize BABY BOOM2 (ZmBBM2), acting as a fertilization checkpoint, as a means to engineer parthenogenesis. We detected ZmBBM2 transcripts only in egg cells but not in other maternal gametic cells. Activation of ZmBBM2 in egg cells in vivo caused maternal cell-autonomous parthenogenesis to produce haploid seeds. Our work provides a highly specific gene-activation CRISPRa technology for target cells and verifies its application for parthenogenesis induction in maize.


Assuntos
Sistemas CRISPR-Cas , Zea mays , Ativação Transcricional/genética , Zea mays/genética , Sistemas CRISPR-Cas/genética , Partenogênese/genética , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA