Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686349

RESUMO

The impact of different degrees of hydrolysis (DHs) on fibrillation when trypsin mediates wheat gluten (WG) fibrillation has not been thoroughly investigated. This study discussed the differences in amyloid fibrils (AFs) formed from wheat gluten peptides (WGPs) at various DH values. The results from Thioflavin T (ThT) fluorescence analysis indicated that WGPs with DH6 were able to form the most AFs. Changes in Fourier Transform Infrared (FTIR) absorption spectra and secondary structure also suggested a higher degree of fibrillation in DH6 WGPs. Analysis of surface hydrophobicity and ζ-potential showed that DH6 AFs had the highest surface hydrophobicity and the most stable water solutions. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) images revealed the best overall morphology of DH6 AFs. These findings can offer valuable insights into the development of a standardized method for preparing wheat gluten amyloid fibrils.


Assuntos
Amiloide , Triticum , Hidrólise , Tripsina , Arritmias Cardíacas , Glutens
2.
Int J Biol Macromol ; 253(Pt 3): 126435, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37611682

RESUMO

Amyloid fibrils have excellent structural characteristics, such as a high aspect ratio, excellent stiffness, and a wide availability of functional groups on the surface. More studies are now focusing on the formation of amyloid fibrils using food proteins. Protein fibrillation is now becoming recognized as a promising strategy for enhancing the function of food proteins and expanding their range of applications. Wheat gluten is rich in glutamine (Q), hydrophobic amino acids, and the α-helix structure with high ß-sheet tendency. These characteristics make it very easy for wheat gluten to form amyloid fibrils. The conditions, formation mechanism, characterization methods, and application of amyloid fibrils formed by wheat gluten are summarized in this review. Further exploration of amyloid fibrils formed by wheat gluten will reveal how they can play a significant role in food, biology, and other fields, especially in medicine.


Assuntos
Amiloide , Triticum , Amiloide/química , Triticum/metabolismo , Estrutura Secundária de Proteína , Glutens/metabolismo , Peptídeos beta-Amiloides
3.
Antioxidants (Basel) ; 12(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627572

RESUMO

Proteins have been extensively studied for their outstanding functional properties, while polyphenols have been shown to possess biological activities such as antioxidant properties. There is increasing clarity about the enhanced functional properties as well as the potential application prospects for the polyphenol-protein complexes with antioxidant properties. It is both a means of protein modification to provide enhanced antioxidant capacity and a way to deliver or protect polyphenols from degradation. This review shows that polyphenol-protein complexes could be formed via non-covalent or covalent interactions. The methods to assess the complex's antioxidant capacity, including scavenging free radicals and preventing lipid peroxidation, are summarized. The combination mode, the type of protein or polyphenol, and the external conditions will be the factors affecting the antioxidant properties of the complexes. There are several food systems that can benefit from the enhanced antioxidant properties of polyphenol-protein complexes, including emulsions, gels, packaging films, and bioactive substance delivery systems. Further validation of the cellular and in vivo safety of the complexes and further expansion of the types and sources of proteins and polyphenols for forming complexes are urgently needed to be addressed. The review will provide effective information for expanding applications of proteins and polyphenols in the food industry.

4.
Food Res Int ; 169: 112851, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254424

RESUMO

Electrospinning has attracted extensive attention among various nanofabrication technologies owing to its ability to produce nanofiber structures with unique properties, such as high specific surface area and porosity, as well as tunable fiber morphology and mechanical properties. The most representative spinning raw materials include natural polymers and synthetic polymers. Owing to the sustainable development strategies, more and more researchers focus on natural polymers. Among natural polymers, wheat gluten (WG) nanofibers have recently attracted much attention owing to its high specific surface area, superior biocompatibility, and unique viscoelasticity. This review summarizes the composition and characteristics of WG, the physical and chemical indicators of a WG electrospinning solution, the main influencing factors in the WG electrospinning process and a characterizations of WG nanofibers. Finally, the review also outlines the applications of WG nanofibers in drug release, biological scaffold, and active food packaging.


Assuntos
Materiais Biocompatíveis , Nanofibras , Materiais Biocompatíveis/química , Triticum , Polímeros/química , Nanofibras/química , Glutens
5.
Molecules ; 27(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431979

RESUMO

In this study, a two-step method was used to realize the liquefaction of waste sawdust under atmospheric pressure, and to achieve a high liquefaction rate. Specifically, waste sawdust was pretreated with NaOH, followed by liquefaction using phenol. The relative optimum condition for alkali-heat pretreatment was a 1:1 mass ratio of NaOH to sawdust at 140 °C. The reaction parameters including the mass ratio of phenol to pretreated sawdust, liquefaction temperature, and liquefaction time were optimized by response surface methodology. The optimal conditions for phenol liquefaction of pretreated sawdust were a 4.21 mass ratio of phenol to sawdust, a liquefaction temperature of 173.58 °C, and a liquefaction time of 2.24 h, resulting in corresponding liquefied residues of 6.35%. The liquefaction rate reached 93.65%. Finally, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) were used to analyze untreated waste sawdust, pretreated sawdust, liquefied residues, and liquefied liquid. SEM results showed that the alkali-heat pretreatment and liquefaction reactions destroyed the intact, dense, and homogeneous sample structures. FT-IR results showed that liquefied residues contain aromatic compounds with different substituents, including mainly lignin and its derivatives, while the liquefied liquid contains a large number of aromatic phenolic compounds. XRD showed that alkali-heat pretreatment and phenol liquefaction destroyed most of the crystalline regions, greatly reduced the crystallinity and changed the crystal type of cellulose in the sawdust.


Assuntos
Fenol , Fenóis , Hidróxido de Sódio , Espectroscopia de Infravermelho com Transformada de Fourier , Álcalis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...