Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141550, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408572

RESUMO

The harvesting of plants is considered an effective method for nutrient recovery in constructed wetlands (CWs). However, excessive plant harvesting can lead to a decrease in plant biomass. It remains unclear what harvesting frequency can optimize plant nutrient uptake and pollutant removal. In this study, CWs planted with Myriophyllum aquaticum were constructed, and three different frequencies of plant harvesting (high: 45 days/time; low: 90 days/time; none: CK) were set to investigate nitrogen removal and its influencing mechanism, as well as the capacity for plant nutrient recovery. The results showed that the average removal efficiencies of ammonia nitrogen (NH4+-N) at 45 days/time, 90 days/time, and CK were 90.3%, 90.8%, and 88.3% respectively, while the corresponding total nitrogen (TN) were 61.2%, 67.4%, and 67.4%. Dissolved oxygen (DO) concentration and water temperature were identified as the main environmental factors affecting nitrogen removal efficiency. Low harvest frequency (90 days/time) increased DO concentration and NH4+-N removal efficiency without impacting TN removal. Additionally, TN recovery from plants under high and low harvest was found to be approximately 9.21-9.32 times higher than that from no harvest conditions. The above studies indicated that a harvest frequency of every 90 days was one appropriate option for M. aquaticum, which not only increased NH4+-N removal efficiencies but also facilitated more efficient nitrogen recovery from the wetland system.


Assuntos
Nitrogênio , Purificação da Água , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Desnitrificação , Purificação da Água/métodos
2.
Sci Total Environ ; 811: 151419, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34742973

RESUMO

Nitrous oxide (N2O) is considered a powerful greenhouse gas. Vegetated ditches are an important source of N2O emissions in the agricultural systems. However, few studies have examined on the relationship between N2O emissions and the water level in vegetated ditches. To investigate the effect of water level on the N2O emissions, three pilot-scale ditches vegetated with Myriophyllum aquaticum were constructed with low (LW), medium (MW), and high (HW) water levels. The examined results indicated that the M. aquaticum ditches decreased N2O emissions by 38.4% and 67.9% in MW and HW, respectively, as compared to the LW ditch. In addition, the N2O emission factor decreased with increasing water level in the order of: LW (0.18%) > MW (0.11%) > HW (0.06%). The MW and HW ditches reduced the N2O emissions by controlling the sediment nitrogen contents, in which the ammonia nitrogen increased with increasing the level of water, while nitrate nitrogen decreased with increasing the level of water. The increase in the level of water significantly reduced the gene abundance of ammonia-oxidizing archaea (AOA) (p < 0.05), thereby reducing the N2O emissions in the MW and HW conditions due to the positive correlation between N2O emissions and AOA gene abundances. The unclassified_k_norank_d_Bacteria was the dominant denitrifying bacterial genus observed in the M. aquaticum ditches, and its highly relative abundance yielded low N2O emissions in the HW ditch. These findings indicate that reducing N2O emissions may be achieved by controlling the water level in vegetated ditches.


Assuntos
Óxido Nitroso , Água , Amônia , Archaea , Nitrogênio/análise , Óxido Nitroso/análise , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...