Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Immunol ; 122: 200-206, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32388482

RESUMO

Chimeric antigen receptor (CAR)-modified adoptive natural killer (NK) cells represent a promising immunotherapeutic modality for cancer treatment but face many challenges in solid tumors. One major obstacle is the immune-suppressive effects induced by inhibitory receptors (IR) including PD1. To interfere with PD1 signaling to augment CAR-NK cells' activity against solid tumors, we rationally designed a novel chimeric costimulatory converting receptor (CCCR), comprising mainly the extracellular domain of PD1, transmembrane and cytoplasmic domains of NKG2D, and the cytoplasmic domain of 41BB. This NK-tailored CCCR was able to switch the negative PD1 signal to an activating signal and hence reversed the immune suppressive effects of PD1. The CCCR-modified NK92 (CCCR-NK92) cells retained typical characteristics of NK cells and exhibited enhanced antitumor activity against human lung cancer H1299 cells in vitro compared with untransduced NK92 cells. The rapid clearance of H1299 cells was caused by CCCR-NK92 cell-induced extensive pyroptosis. In a lung cancer xenograft model, CCCR-NK92 cells significantly inhibited tumor growth. Our results highlight a promising immunotherapeutic potential of using NK-tailored CCCR engineered NK92 cells to treat human lung cancer.

2.
Mol Immunol ; 114: 108-113, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351411

RESUMO

Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells have the potential to provide the potential for the implementation of allogeneic "off-the-shelf" cellular therapy against cancers. Currently, most CARs are not optimized for NK cells, so new NK-tailored CARs are needed. Here, a major activating receptor of NK cells, NKG2D was harnessed to design different chimeric receptors that mediate strong NK cell signaling. In these NKG2D signaling-based chimeric receptors, the extracellular domain of inhibitory receptor PD-1 was employed to reverse the immune escape mediated by PD-1 ligands in the solid tumors. To achieve the rational design of chimeric PD1-NKG2D receptors, we developed a transmembrane protein tertiary structure prediction program (PredMP & I-TASSER) and optimized the conformation of the PD-1 ectodomain by genetically altering the sequences encoding the hinge and intracellular domain. Finally, we identified a chimeric PD1-NKG2D receptor containing NKG2D hinge region and 4-1BB co-stimulatory domain to exhibit stable surface expression and mediate in vitro cytotoxicity of NK92 cells against various tumor cells. This strategy now provides a promising approach for the computer-aided design (CAD) of potent NK cell-tailored chimeric receptors with NKG2D signaling.


Assuntos
Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptores de Células Matadoras Naturais/imunologia , Células A549 , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Células HEK293 , Humanos , Proteínas de Membrana/imunologia , Transdução de Sinais/imunologia
3.
Vaccine ; 37(15): 2090-2098, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30837171

RESUMO

Compelling evidence has shown that blocking VEGF via monoclonal antibodies may be beneficial in that it not only inhibits tumor angiogenesis but also reduces immune suppression and promotes T cell infiltration into tumors. Herein, we determined whether our recently generated VEGF165b mutant could be used as a co-immunization adjunct to augment the peptide cancer-vaccine- induced immune response in a mouse model of breast cancer. When co-immunized mVEGF165b with the peptide-based cancer vaccine (MUC1, a T-cell epitope dominant peptide vaccine from Mucin1), the VEGF antibody titers increased approximately 600,000-fold in mice. Moreover, the anti-VEGF antibody also reduced the frequency of regulatory T cells (Tregs) in both preventive and therapeutic scenarios. Mechanistically, the decrease of the Tregs population was associated with a remarkably increased MUC-1-specific IFN-γ-producing CD8+ T cells and anti-MUC1 humoral response. Finally, this combination co-immunization produced a superior antitumor response and significantly prolonged survival of tumor-bearing mice. In conclusion, our findings suggest that mVEGF165b may be an ideal immunization adjunct to enhance the immune efficacy of peptide-based tumor vaccines by overcoming immune tolerance.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Neoplasias da Mama/terapia , Vacinas Anticâncer/imunologia , Mucina-1/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Anticorpos Monoclonais/imunologia , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Modelos Animais de Doenças , Feminino , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mucina-1/imunologia , Linfócitos T Reguladores/imunologia , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...