Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946627

RESUMO

MnCo spinel oxide catalysts were successfully synthesized by the calcination of bimetallic Mn/Co-MOFs as sacrificial templates. The derived catalysts exhibited optimal catalytic activity, reusability and thermal stability for toluene oxidation, which was ascribed to their large specific surface area, higher number of octahedral metal ions and the weakest metal-oxygen bonds.

2.
J Hazard Mater ; 366: 140-150, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30513441

RESUMO

In this work, micro-mesoporous UiO-66 was successfully prepared with P123 (EO20PO70EO20) as structure-directing agent by a simple solvothermal method. Adsorption/desorption kinetics of gaseous toluene over pristine UiO-66 and micro-mesoporous UiO-66 were investigated by breakthrough experiments, toluene vapor adsorption isotherm measurements and temperature programmed desorption (TPD) experiments. The interactions between toluene and UiO-66 samples were assessed through the Henry's law constant (KH) and the isosteric adsorption heat (ΔHads). The micro-mesoporous UiO-66 crystal demonstrated 2.6 times toluene adsorption capacity of the pristine UiO-66 when the P123/Zr4+ molar ratio was 0.2. Results showed that micropore adsorption was the main adsorption process and the larger pores in micro-mesoporous UiO-66 increased molecular diffusion rate and reduced the mass transfer resistance. This result indicated that micro-mesoporous structures and defect sites had a positive effect on toluene molecules capture. The breakthrough times and the working capacities decreased with the increase of the relative humidity and adsorption temperature. A good thermal stability and reproducibility were revealed over the micro-mesoporous UiO-66 in this paper.

3.
J Colloid Interface Sci ; 539: 152-160, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30579219

RESUMO

Metal organic frameworks (MOFs) are good absorbents that provide high specific surface area, modified pore surface and controllable pore size. The aim of this work is to prepare a MOFs material with good toluene adsorption property in the presence of water. In this paper, modified UiO-66 (University of Oslo 66) was successfully synthesized with polyvinylpyrrolidone (PVP) as structure-directing agent by a simple solvothermal method. The physical and chemical properties were obtained by a series of characterization instruments. Some missing-linker defect sites were observed on modified materials (defective UiO-66) and were known as the main active sites for toluene adsorption. The defective UiO-66 (PVP-U-0.5, 259 mg g-1) demonstrated 1.7 times toluene adsorption capacity of the pristine UiO-66 (151 mg g-1) when the PVP/Zr4+ ratio was 0.5. The interactions between toluene and UiO-66 and PVP-U-0.5 were assessed through the Henry's law constant (KH) and the isosteric adsorption heat (ΔHads), which indicated that stronger interaction between PVP-U-0.5 and toluene molecules. Moreover, PVP-U-0.5 displayed good adsorption capacity (84 mg g-1) at high relative humidity (70% RH). Water temperature programmed desorption experiments revealed that PVP-U-0.5 had more hydrophobic property, which provided a further possibility for practical application for the removal of toluene.

4.
Chemistry ; 24(35): 8822-8832, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29654604

RESUMO

A comprehensive study was carried out on amorphous metal-organic frameworks Mn-MIL-100 as efficient catalysts for CO oxidation. This study focused on explaining the crystalline-amorphous-crystalline transformations during thermolysis of Mn-MIL-100 and studying the structure changes during the CO oxidation reaction. A possible formation mechanism of amorphous Mn-MIL-100 was proposed. Amorphous Mn-MIL-100 obtained by calcination at 250 °C (a-Mn-250) showed a smaller specific surface area (4 m2 g-1 ) but high catalytic activity. Furthermore, the structure of amorphous Mn-MIL-100 was labile during the reaction. When a-Mn-250 was treated with reaction atmosphere at high temperature (giving used-a-Mn-250-S), the amorphous catalysts transformed into Mn2 O3 . Meanwhile, the BET surface area (164 m2 g-1 ) and catalytic performance both sharply increased. In addition, used-a-Mn-250-S catalyst transformed from Mn2 O3 into Mn3 O4 , and this resulted in a slight decrease of catalytic activity in the presence of 1 vol % water vapor in the feed stream. A schematic mechanism of the structure changes during the reaction process was proposed. The success of the synthesis relies on the increase in BET surface area by using CO as retreatment atmosphere, and the enhanced catalytic activity was attributed to the unique structure, a large quantity of surface active oxygen species, oxygen vacancies, and good low-temperature reduction behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...