Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 84(2): 214-226, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36646954

RESUMO

Amide herbicides have been widely applied in agriculture and found to be widespread and affect nontarget organisms in the environment. To better understand the biotoxicity mechanisms and determine the toxicity to the nontarget organisms for the hazard and risk assessment, five QSAR models were developed for the biotoxicity prediction of amide herbicides toward five aquatic and terrestrial organisms (including algae, daphnia, fish, earthworm and avian species), based on toxicity concentration and quantitative molecular descriptors. The results showed that the developed models complied with OECD principles for QSAR validation and presented excellent performances in predictive ability. In combination, the investigated QSAR relationship led to the toxicity mechanisms that eleven electrical descriptors (EHOMO, ELUMO, αxx, αyy, αzz, µ, qN-, Qxx, Qyy, qH+, and q-), four thermodynamic descriptors (Cv, Sθ, Hθ, and ZPVE), and one steric descriptor (Vm) were strongly associated with the biotoxicity of amide herbicides. Electrical descriptors showed the greatest impacts on the toxicity of amide herbicides, followed by thermodynamic and steric descriptors.


Assuntos
Herbicidas , Animais , Relação Quantitativa Estrutura-Atividade , Amidas , Ecotoxicologia/métodos , Medição de Risco , Daphnia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...