Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38936831

RESUMO

Bacterial biofilms are associated with antibiotic resistance and account for approximately 80% of all bacterial infections. In this study, we explored novel nanomaterials for combating bacteria and their biofilms. Artemisinin nano-copper (ANC) was synthesised using a green synthesis strategy, and its shape, size, structure, elemental composition, chemical valence, zeta potential, and conductivity were characterised using transmission electron microscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, zeta potential, and dynamic light scattering (DLS). The results showed that ANC was successfully synthesised utilizing a liquid-phase chemical reduction method using chitosan as a modified protectant and l-ascorbic acid as a green reducing agent. The stability of ANC was evaluated using DLS. The results showed that the particle size of the ANC at different concentrations was comparable to that of the original solution after 7 days of storage, and there was no significant change in PDI (P > 0.05). The antibacterial effects of ANC on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were determined by Disk diffusion and broth dilution methods. The results demonstrated that ANC inhibited and killed E. coli and S. aureus. The effect of ANC on bacterial biofilms was investigated using Crystal Violet staining, scanning electron microscopy, laser confocal microscope, and quantitative PCR. The results showed that ANC treatment was able to destroy bacterial biofilms and downregulate biofilm- and virulence-related genes in E. coli (HlyA, gyrA, and F17) and S. aureus (cna, PVL, ClfA, and femB). Green-synthesised ANC possesses excellent anti-biofilm properties and is expected to exhibit antibacterial and anti-biofilm properties.

2.
Ecotoxicol Environ Saf ; 274: 116205, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503105

RESUMO

OBJECTIVE: To investigate the association between particulate matter and the incidence, disability, and mortality of stroke, we reported the burden of stroke attributable to particulate matter (PM2.5) pollution, including ambient particulate matter pollution (APMP) and household air pollution from solid fuels (HAP), from 1990 to 2019. METHODS: We retrieved the detailed data on the burden of stroke attributable to PM2.5 from the Global Burden of Disease (GBD) 2019. The number of disability-adjusted life-years (DALYs) and deaths, age-standardized death rates (ASMR), and age-standardized disability-adjusted life-years rates (ASDR) attributable to PM2.5 were estimated by age, sex, geographical location, socio-demographic index (SDI), and stroke subtypes (ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage). The estimated annual percentage change (EAPC) was calculated to assess the trends in ASDR and ASMR during the period 1990-2019. RESULTS: Regarding stroke subtypes, the proportion of ischemic stroke burden is increasing, while intracerebral hemorrhage carries the heaviest burden. Both APMP and HAP contributed the most to stroke-related deaths and DALYs of stroke among the elderly populations and males. The highest ASDR and ASMR of stroke attributable to APMP were in the middle SDI regions, especially in East Asia. For HAP, the highest ASDR and ASMR were in the low SDI regions, mainly in Oceania. From 1990-2019, in terms of the EAPC results, APMP caused an increased burden of stroke, whereas the impact of HAP significantly fell. The most pronounced increase in ASDR and ASMR for strokes attributed to APMP were in the low-middle SDI and low SDI regions, particularly among the 25-35 age group. CONCLUSIONS: Stroke attributed to PM2.5 is a global health problem, and the patterns and trends were heterogeneous across APMP and HAP. Targeted interventions should be formulated for APMP and HAP.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Idoso , Masculino , Humanos , Material Particulado/efeitos adversos , Acidente Vascular Cerebral/epidemiologia , Poluição Ambiental , Hemorragia Cerebral/epidemiologia , Saúde Global
3.
Ecotoxicol Environ Saf ; 270: 115851, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157800

RESUMO

Maternal endocrine disrupting chemicals (EDCs) exposure, the common environmental pollutants, was capable of involving in adverse pregnancy outcomes. However, the evidence of their connection is not consistent. Our goal was to comprehensively explore the risk of EDCs related to adverse pregnancy outcomes. One hundred and one studies were included from two databases before 2023 to explore the association between EDCs and adverse pregnancy outcomes including miscarriage, small for gestational age (SGA), low birth weight (LBW) and preterm birth (PTB). We found that maternal PFASs exposure was positively correlated with PTB (OR:1.13, 95% CI:1.04-1.23), SGA (OR:1.10, 95% CI:1.04-1.16) and miscarriage (OR:1.09, 95% CI:1.00-1.19). The pooled estimates also showed maternal PAEs exposure was linked with PTB (OR:1.16, 95% CI:1.11-1.21), SGA (OR:1.20, 95% CI:1.07-1.35) and miscarriage (OR:1.55, 95% CI:1.33-1.81). In addition, maternal exposure to some specific class of EDCs including PFOS, MBP, MEHP, DEHP, and BPA was associated with PTB. Maternal exposure to PFOS, PFOA, PFHpA was associated with SGA. Maternal exposure to BPA was associated with LBW. Maternal exposure to MMP, MEHP, MEHHP, MEOHP, BPA was associated with miscarriage. Maternal PFASs, PAEs and BPA exposure may increase adverse pregnancy outcomes risk according to our study. However, the limited number of studies on dose-response hampered further explanation for causal association.


Assuntos
Aborto Espontâneo , Dietilexilftalato/análogos & derivados , Disruptores Endócrinos , Fluorocarbonos , Nascimento Prematuro , Gravidez , Feminino , Recém-Nascido , Humanos , Exposição Materna/efeitos adversos , Disruptores Endócrinos/toxicidade , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/epidemiologia , Aborto Espontâneo/induzido quimicamente , Aborto Espontâneo/epidemiologia , Retardo do Crescimento Fetal
4.
Nanoscale Res Lett ; 14(1): 372, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31820134

RESUMO

Subsurface defects have a significant impact on the precision and performance of nano-structures. In this paper, molecular dynamics simulation of nano-indentation is performed to investigate the effect of machining-induced subsurface defects on dislocation evolution and mechanical properties of materials, in which the specimen model with subsurface defects is constructed by nano-cutting conforming to reality. The formation mechanism of subsurface defects and the interaction mechanism between machine-induced defects and dislocation evolution are discussed. The hardness and Young's elastic modulus of single crystal copper specimens are calculated. The simulation results indicate that there exist stable defect structure residues in the subsurface of workpiece, such as atomic clusters, stacking fault tetrahedral, and stair-rod dislocations. Secondary processing of nano-indentation can restore internal defects of the workpiece, but the subsurface damage in the secondary processing area is aggravated. The nano-indentation hardness of specimens increases with the introduction of subsurface defects, which results in the formation of work-hardening effect. The existence of subsurface defects can weaken the ability of material to resist elastic deformation, in which the mutual evolution between dislocations and subsurface defects plays an important role.

5.
Oncol Res ; 22(3): 159-65, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26168134

RESUMO

Human interleukin-24 (IL-24) has been found recently to play a tumor-suppressor role in a variety of tumors, including gliomas. However, the exact mechanism of glioma tumor suppression by IL-24 remains unclear. We collected by surgery 30 gliomas at different grades and evaluated IL-24 and double-stranded RNA-activated protein kinase (PKR) expression using fluorescence quantitative real-time PCR and immunohistochemical techniques. Two human glioma cell lines, U87 and U251, were transfected with Ad5F35-IL24 via recombinant adenovirus-mediated gene transfer and apoptosis, as well as PKR and eIF-2α expression analyzed. The results showed that IL-24 and PKR expression decreased with increasing tumor grade. Compared with cells of the control groups, Ad5F35-IL24-infected U87 and U251 cells exhibited a significantly increased apoptosis and elevated PKR, eIF-2α, p-PKR, and p-eIF-2α levels, while the expression of Bcl-2 was decreased. Finally, IL-24 also sensitized apoptosis of glioma cells to temozolomide (TMZ). This study indicates that IL-24 upregulates expression and activation of PKR, further increasing expression and activation of eIF-2α, and decreasing Bcl-2 to promote apoptosis. IL-24 also increases chemosensitivity of glioma cells to TMZ.


Assuntos
Apoptose/efeitos dos fármacos , Glioma/patologia , Interleucinas/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , eIF-2 Quinase/biossíntese , Apoptose/genética , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Glioma/tratamento farmacológico , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Fosforilação , Proteínas Recombinantes/genética , Temozolomida , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...