Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(26): 17624-17628, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38889210

RESUMO

Due to the highly chemically inert nature, direct activation and transformation of dinitrogen are challenging. Here, we disclose the synthesis, isolation, and derivatization of (N2)3- supported by lutetium complex. Initially, a (N2)3- radical, in [{(C5Me5){MeC(NiPr)2}Lu}2(µ2-η2:η2-N2)][K(crypt)] (crypt = 2,2,2-cryptand) complex, was generated through the reduction of neutral lutetium dinitrogen complex [{(C5Me5){MeC(NiPr)2}Lu}2(µ2-η2:η2-N2)] with potassium metal. Subsequently, the reaction of (N2)3- complex with methyl triflate (or triflic acid) led to the formation of an N-C (or N-H) bond, yielding the corresponding [{(C5Me5){MeC(NiPr)2}Lu}2(NN-R)(OTf)][K(crypt)] (R = Me, H, OTf = CF3SO3) as the product. Both electron paramagnetic resonance spectroscopy and density functional theory analyses support the radical character of the NN-Me unit. The Lu-N bonds in the (NN-Me)•2- radical complex are predominantly ionic, with 77% of the unpaired electron localized on the (NN-Me) fragment. Moreover, the geometry of the pure organic radical (NN-Me)•2-, optimized by double-hybrid density functional theory, closely matches that of the (NN-Me)•2- lutetium complex.

2.
Inorg Chem ; 63(12): 5530-5540, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38457482

RESUMO

An N-aryloxide-amidine ligand (1), [ONNO] ligand, integrating phenoxide (PhO-) and amidine ligands through methylene linkers, was employed in actinide chemistry. Upon reaction of the deprotonated ligand with ThCl4(DME)2 in ether, the corresponding dimer complex 2 was obtained. Upon treatment of 2 with KCp* (Cp* = Cp(Me)5) in tetrahydrofuran, the corresponding {[ONNO]ThIVCp*(LiCl)}2 (4) was obtained. In complex 2, the two ArO- arms bonded from the same ligand to different ThIV centers. In contrast, both ArO- arms coordinated to the same metal center in 4. Notably, when a mixture of 2 and bipyridine was treated with one or two equiv of KC8, the [ONNO]ThIV-bipyridyl•̅ radical dimer complex (5) and [ONNO]ThIV-bipyridyl2- dianionic dimer species (6) were obtained, respectively.

3.
Dalton Trans ; 52(33): 11565-11570, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37545467

RESUMO

A N-aryloxide-amidine ligand (H3L), integrating phenoxide (PhO-) and amidine ligands through methylene linkers, has been synthesized from 2-(aminomethyl)-6-(tert-butyl)phenol in two steps. Upon reacting the deprotonated H3L ligand with group 4 metal chloride MIVCl4, a corresponding (LMIV-Cl)2 dimer could be obtained. The coordination modes exhibit variation depending on the radius of the metal ions. In the case of (LTiIV-Cl)2, the two ArO- arms from the same ligand bond to two different Ti(IV) centers, while in the case of (LZrIV/HfIV-Cl)2, both ArO- arms coordinate with the same metal center. Moreover, the two C-N bonds in the amidinate moiety are localized in (LTiIV-Cl)2, whereas they delocalize in (LZrIV-Cl)2. Notably, (LHfIV-Cl)2 could further react with one equivalent of HfCl4, yielding the binuclear metal azide in the presence of KN3 and LiCl, where the coordination mode of the amidinate moiety changed from the bidentate chelating type to the bimetallic bridging coordination.

4.
J Am Chem Soc ; 145(12): 6633-6638, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36917557

RESUMO

Selective cleavage of C-C bonds within arene rings is of great interest but remains elusive, especially for the molecules possessing the active and inert C-C bonds. Here, we report that the active and inert C-C bonds of biphenylene could be controllably cleaved by the reaction of biphenylene, potassium graphite, and rare-earth complexes with different metal centers. For scandium, the bond activation occurs at the Caryl-Caryl single bond, yielding 9-scandafluorene. For Lu, the reaction goes through ring contraction of the aromatic ring in biphenylene to provide benzopentalene dianionic lutetium. The origin of the selectivity and the reaction mechanism were illustrated by the isolation of intermediates and DFT calculations.

5.
Chemistry ; 29(27): e202204079, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36788108

RESUMO

As the key intermediates in metal-promoted/catalyzed C-C bond coupling reactions of nitriles and alkynes, azametallacyclopentadienes, M(N=CR1 -CR2 =CR3 ), are an important class of azametallacycles. Although the first authentic azametallacyclopentadienes were documented in 1986, their chemistry towards solid-state structures, intrinsic reactivity, and synthetic application was rarely investigated for a long time. At the beginning of this century, seminal works about the applications of azametallacyclopentadienes in the synthesis of heterocycles, including multi-substituted pyridines, isoquinolines, furans, and pyrroles were reported. Subsequently, a series of new complexes with this motif, namely the Group 4, aluminum, actinide, and rare-earth azametallacyclopentadienes were isolated and structurally characterized. Among them, the rare-earth azametallacyclopentadiene expresses high reactivity towards unsaturated molecules, such as nitriles, isocyanides, and Mo(CO)6 to provide novel fused metallacycles. In this Concept, we reviewed the advances in the preparation, reactivity, and synthetic application of azametallacyclopentadienes in the past twenty years.

6.
J Am Chem Soc ; 144(48): 21872-21877, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36410000

RESUMO

Transition metal complexes with a doubly deprotonated diazomethane (CNN2-) ligand have been proposed as fleeting intermediates in nitrogen transfer reactions. However, in contrast to isoelectronic azide (N3-), well-defined examples are unknown. We here report the synthesis and characterization of isolable complexes with terminal and bridging CNN2- ligands, stabilized by platinum(II) pincer fragments. Bonding within the allenic dimetallanitrilimine core (Pt-N═N═C-Pt) was probed by oxidation of the bridging ligand. Enhanced reactivity toward [3 + 2]-cycloaddition with CO2 was obtained. Photofragmentation favors N-NC over NN-C bond cleavage as a route to cyanide and a transient metallonitrene complex.

7.
Chemistry ; 27(66): 16498-16504, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34608685

RESUMO

Although the reaction chemistry of transition metallacyclopropenes has been well-established in the last decades, the reactivity of rare-earth metallacyclopropenes remains elusive. Herein, we report the reaction of lutetacyclopropene 1 toward a series of unsaturated molecules. The reaction of 1 with one equiv. of PhCOMe, Ar1 CHO (Ar1 =2,6-Me2 C6 H3 ), W(CO)6 , and PhCH=NPh provided oxalutetacyclopentenes, metallacyclic lutetoxycarbene, and azalutetacyclopentene via 1,2-insertion of C=O, C≡O, or C=N bonds into Lu-Csp2 bond, respectively. However, the reaction between 1 and Ar2 N=C=NAr2 (Ar2 =4-MeC6 H4 ) gave an acyclic lutetium complex with a diamidinate ligand by the coupling of one molecule of 1 with two carbodiimides, irrespective of the amount of carbodiimide employed. More interestingly, when 1 was treated with two equiv. of Ar1 CHO, the reductive coupling of two C=O bonds was discovered to give a lutetium pinacolate complex along with the release of tolan. Remarkably, the reactivity of 1 is significantly different from that of scandacyclopropenes; these metallacycles derived from 1 all represent the first cases in rare-earth organometallic chemistry.

8.
J Am Chem Soc ; 143(24): 9151-9161, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34029479

RESUMO

Exploring new lanthanide metallacycles and finding their unique chemistry different from the analogues of transition metals are of great interest and importance. In this work, we reported the synthesis, characterization, and reactivity toward nitriles of two lanthanide metallacyclopropenes: lutetacyclopropene 2a and dysprosacyclopropene 2b. The selective coupling of 2a and three molecules of PhCN was found for the first time to provide the unexpected fused lutetacycle 3a with one 1,6-dihydropyrimidine ring. Mechanistic studies by DFT calculations reveal that the triple insertion of PhCN into 2a proceeds through four key steps: the insertion of the first PhCN into 2a giving azalutetacyclopentadiene IM1, the insertion of the second PhCN into the Lu-N bond of IM1, the intramolecular electrocyclization providing a highly strained η2-pyrimidine metallacycle, and the insertion of the third PhCN into the Lu-Csp3 bond. Isolation and characterization of two active intermediates, azalutetacyclopentadiene IM1 and η2-pyrimidine dysprosacycle, provide critical evidence for the formation of 3a. Furthermore, IM1 was also reported to react with TMSCN, isocyanides, or W(CO)6 to furnish the fused [4,5] lutetacycles. The chemistry of two lanthanide metallacyclopropenes with nitriles is significantly different from these metallacyclopropenes of scandium and other metals. Most notably, the azalutetacyclopentadienes, η2-pyrimidine complex, and other metallacycles all represent the first examples in rare-earth organometallic chemistry; the formation of these new lutetacycles provides concrete evidence for understanding the mechanism of transition metal promoted or catalyzed [2+2+2] cycloaddition between alkynes and nitriles.

9.
Natl Sci Rev ; 7(10): 1564-1583, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34691489

RESUMO

N-containing organic compounds are of vital importance to lives. Practical synthesis of valuable N-containing organic compounds directly from dinitrogen (N2), not through ammonia (NH3), is a holy-grail in chemistry and chemical industry. An essential step for this transformation is the functionalization of the activated N2 units/ligands to generate N-C bonds. Pioneering works of transition metal-mediated direct conversion of N2 into organic compounds via N-C bond formation at metal-dinitrogen [N2-M] complexes have generated diversified coordination modes and laid the foundation of understanding for the N-C bond formation mechanism. This review summarizes those major achievements and is organized by the coordination modes of the [N2-M] complexes (end-on, side-on, end-on-side-on, etc.) that are involved in the N-C bond formation steps, and each part is arranged in terms of reaction types (N-alkylation, N-acylation, cycloaddition, insertion, etc.) between [N2-M] complexes and carbon-based substrates. Additionally, earlier works on one-pot synthesis of organic compounds from N2 via ill-defined intermediates are also briefed. Although almost all of the syntheses of N-containing organic compounds via direct transformation of N2 so far in the literature are realized in homogeneous stoichiometric thermochemical reaction systems and are discussed here in detail, the sporadically reported syntheses involving photochemical, electrochemical, heterogeneous thermo-catalytic reactions, if any, are also mentioned. This review aims to provide readers with an in-depth understanding of the state-of-the-art and perspectives of future research particularly in direct catalytic and efficient conversion of N2 into N-containing organic compounds under mild conditions, and to stimulate more research efforts to tackle this long-standing and grand scientific challenge.

10.
J Am Chem Soc ; 141(51): 20547-20555, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31801021

RESUMO

Although transition metallacyclopropenes have been extensively explored for more than 40 years, their analogues of rare-earth metals have remained elusive. Herein, we report the synthesis of three isolable scandacyclopropenes, thus representing the first well-defined rare-earth metallacyclopropenes. Structural characterization and DFT calculations revealed a delocalized three-center two-electron (3c-2e) aromatic system. When scandacyclopropenes were treated with phenylacetylene or TMSN3, the scandium complex of bis-phenylacetylide or bis-azide was obtained, respectively. The reaction of scandacyclopropene with phenazine could provide the binuclear ring-opening scandium complex via 1,4-insertion of phenazine into one Sc-C bond and subsequent metathesis reaction. However, insertion of TMSNCO or N2O into one Sc-C bond of scandacyclopropenes gave a five- or six-membered scandacycle. In addition, scandacyclopropenes can serve as a two-electron reductive agent for PhSSPh and PhNNPh. These results show that scandacyclopropenes exhibit diversified and unique reactivity toward small molecules because of the strongly nucleophilic alkenediyl dianion and highly strained three-membered ring.

11.
J Am Chem Soc ; 141(22): 8773-8777, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31117668

RESUMO

Direct conversion of dinitrogen (N2) into organic compounds, not through ammonia (NH3), is of great significance both fundamentally and practically. Here we report a highly efficient scandium-mediated synthetic cycle affording hydrazine derivatives (RMeN-NMeR') directly from N2 and carbon-based electrophiles. The cycle includes three main steps: (i) reduction of a halogen-bridged discandium complex under N2 leading to a (N2)3--bridged discandium complex via a (N2)2- intermediate; (ii) treatment of the (N2)3- complex with methyl triflate (MeOTf), affording a (N2Me2)2--bridged discandium complex; and (iii) further reaction of the (N2Me2)2- complex with the carbon-based electrophile, producing the hydrazine derivative and regenerating the halide precursor. Furthermore, insertion of a CO molecule into one Sc-N bond in the (N2Me2)2--scandium complex was observed. Most notably, this is the first example of rare-earth metal-promoted direct conversion of N2 to organic compounds; the formation of C-N bonds by the reaction of these (N2)3- and (N2Me2)2- complexes with electrophiles represents the first case among all N2-metal complexes reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...