Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 321: 121141, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702433

RESUMO

Arsenic contamination in agricultural soils has posed tremendous threat to sustainable crop production and human health via food chain. Calcium and Glutamate have been well-documented in metal(loid)s detoxification, but it is poorly understood how they regulate arsenic-induced toxicity to plants. In this study, the effect of glutamate and calcium at high concentration on arsenic toxicity and accumulation in barley seedling was accessed in terms of plant growth, photosynthetic efficacy, arsenic uptake, translocation and accumulation, antioxidant defense, nutrient uptake and the expression of As transporters. Our results have demonstrated that calcium could effectively ameliorate arsenic toxicity to barley seedlings, which is mainly attributed to its beneficial effect on increasing nutrient uptake, reducing the aboveground arsenic accumulation and enhancing antioxidative defense capacity. However, it is unexpected that glutamate considerably exacerbated the arsenic toxicity to barley seedlings. More importantly, for the first time, glutamate was observed to tremendously facilitate the root-to-shoot translocation of arsenic by 41.8- to 60.8-fold, leading to 90% of the total amount of As accumulating in barley shoots. The reason of this phenomenon can be well explained by the glutamate-triggered enormous upregulation of genes involved in arsenic uptake (HvPHT1;1, HvPHR2 and HvNIP3;2), reduction (HvHAC1;1), translocation (HvABCC7, HvNIP1;1 and HvNIP3;3) and intracellular sequestration (HvABCC1). These findings suggest that calcium and glutamate function as the opposite player in managing arsenic, with calcium being an effective alleviator of arsenic stress to ensure the safe production of crops; while glutamate being a highly efficient phytoextraction agent for phytoremediation of arsenate-contaminated soils.


Assuntos
Arsênio , Hordeum , Poluentes do Solo , Humanos , Arsênio/análise , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Hordeum/metabolismo , Plântula/metabolismo , Antioxidantes/metabolismo , Solo , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
2.
Ecotoxicol Environ Saf ; 230: 113128, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979311

RESUMO

Consumption of rice (Oryza sativa L.) is one of the major pathways for heavy metal bioaccumulation in humans over time. Understanding the molecular responses of rice to heavy metal contamination in agriculture is useful for eco-toxicological assessment of cadmium (Cd) and its interaction with zinc (Zn). In certain crops, the impacts of Cd stress or Zn nutrition on the biophysical chemistry and gene expression have been widely investigated, but their molecular interactions at transcriptomic level, particularly in rice roots, are still elusive. Here, hydroponic investigations were carried out with two rice genotypes (Yinni-801 and Heizhan-43), varying in Cd contents in plant tissues to determine their transcriptomic responses upon Cd15 (15 µM) and Cd15+Zn50 (50 µM) treatments. High throughput RNA-sequencing analysis confirmed that 496 and 2407 DEGs were significantly affected by Cd15 and Cd15+Zn50, respectively, among which 1016 DEGs were commonly induced in both genotypes. Multitude of DEGs fell under the category of protein kinases, such as calmodulin (CaM) and calcineurin B-like protein-interacting protein kinases (CBL), indicating a dynamic shift in hormonal signal transduction and Ca2+ involvement with the onset of treatments. Both genotypes expressed a mutual regulation of transcription factors (TFs) such as WRKY, MYB, NAM, AP2, bHLH and ZFP families under both treatments, whereas genes econding ABC transporters (ABCs), high affinity K+ transporters (HAKs) and Glutathione-S-transferases (GSTs), were highly up-regulated under Cd15+Zn50 in both genotypes. Zinc addition triggered more signaling cascades and detoxification related genes in regulation of immunity along with the suppression of Cd-induced DEGs and restriction of Cd uptake. Conclusively, the effective integration of breeding techniques with candidate genes identified in this study as well as economically and technologically viable methods, such as Zn nutrient management, could pave the way for selecting cultivars with promising agronomic qualities and reduced Cd for sustainable rice production.

3.
Plants (Basel) ; 10(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809925

RESUMO

Nitrogen (N) availability and form have a dramatic effect on N uptake and assimilation in plants, affecting growth and development. In the previous studies, we found great differences in low-N tolerance between Tibetan wild barley accessions and cultivated barley varieties. We hypothesized that there are different responses to N forms between the two kinds of barleys. Accordingly, this study was carried out to determine the response of four barley genotypes (two wild, XZ16 and XZ179; and two cultivated, ZD9 andHua30) under 4Nforms (NO3-, NH4+, urea and glycine). The results showed significant reduction in growth parameters such as root/shoot length and biomass, as well as photosynthesis parameters and total soluble protein content under glycine treatment relative to other N treatments, for both wild and cultivated barley, however, XZ179 was least affected. Similarly, ammonium adversely affected growth parameters in both wild and cultivated barleys, with XZ179 being severely affected. On the other hand, both wild and cultivated genotypes showed higher biomass, net photosynthetic rate, chlorophyll and protein in NO3- treatment relative to other three N treatments. It may be concluded that barley undisputedly grows well under inorganic nitrogen (NO3-), however in response to the organic N wild barley prefer glycine more than cultivated barely.

4.
Ecotoxicol Environ Saf ; 209: 111761, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33333341

RESUMO

Cobalt (Co) and copper (Cu) co-exist commonly in the contaminated soils and at excessive levels, they are toxic to plants. However, their joint effect and possible interaction have not been fully addressed. In this work, a hydroponic experiment was performed to investigate the combined effects of Co and Cu on two barley genotypes at transcriptional level by RNA-seq analysis. The results identified 358 genes inclusively expressed in both genotypes under single and combined treatments of Co and Cu, with most of them being related to metal transport, stress response and transcription factor. The combined treatment induced more differently expressed genes (DEGs) than the single treatment, with Yan66, a metal tolerant genotype having more DEGs than Ea52, a sensitive genotype. The pathways associated with anthocyanin biosynthesis, MAPK signaling, glutathione biosynthesis, phenylalanine metabolism, photosynthesis, arginin biosynthesis, fatty acid elongation, and plant hormone signal transduction biosynthesis were induced and inhibited in Yan66 and Ea52, respectively. Furthermore, flavonoid biosynthesis was much more largely enhanced and accordingly more free flavonoid components (naringin, narirutin and neohesperidin) were accumulated in Yan66 than in Ea52. It may be suggested that high tolerance to both Co and Cu in Yan66 is attributed to its high gene regulatory ability.


Assuntos
Cobalto/toxicidade , Cobre/metabolismo , Hordeum/fisiologia , Adaptação Fisiológica/fisiologia , Cobalto/metabolismo , Cobre/toxicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Hordeum/efeitos dos fármacos , Hordeum/genética , Hidroponia , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Transcriptoma
5.
Plant Physiol Biochem ; 155: 927-937, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32932124

RESUMO

Cobalt (Co) and copper (Cu) co-exist in the metal contaminated soils and cause the serious toxicity to crops, while their interactive effect on plant growth and development is still poorly understood. In this work, a hydroponic experiment was carried out to reveal the interactive effect of Co and Cu on photosynthesis and metabolite profiles of two barley genotypes differing in metal tolerance. The results showed that both single and combined treatments of Co and Cu caused a significant reduction in chlorophyll content and photosynthetic rate of the two barley (Hordeum vulgare) genotypes, with the effect being greater for the combined treatment and the sensitive genotype (Ea52) being more affected than the tolerant genotype (Yan66). Compared to Cu or Co treatment alone, the combined treatment significantly increased the levels of phenolic components, including cinnamic derivatives (caffeic, chlorogenic, ferullic, p-coumaric); benzoic derivatives (p-hydroxybenzoic, vanillic, syringic, sallicilic, protocatechuic acid) as well as free amino acids, with Yan66 having more accumulation than Ea52. Meanwhile, under the combined treatment, the phenylalanine ammonialyase-related gene (HvPAL) was highly regulated along with the genes involved in the synthesis of malate (HvMDH) and citrate (HvCSY), with Ya66 showing the higher expression of these genes than Ea52. It can be concluded that higher Cu and Co stress tolerance in Yan66 is attributed to more accumulation of the metabolites including phenolics and amino acids.


Assuntos
Aminoácidos/química , Cobalto/toxicidade , Cobre/toxicidade , Hordeum/química , Fenóis/química , Genótipo , Hordeum/efeitos dos fármacos , Estresse Fisiológico
6.
Ecotoxicol Environ Saf ; 187: 109866, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31677568

RESUMO

The combined effects of cobalt (Co) and copper (Cu) in their toxicity to plants is poorly studied although these two metals co-exist commonly in soil. In this study, a hydroponic experiment was carried out to investigate the effect of longer exposure of two barley genotypes differing in Co tolerance to the combined Co and Cu stress. The results confirmed the previous findings that Co accumulation in plant tissues was reduced by Cu presence, while Cu accumulation was stimulated by Co presence. Moreover, both single and combined treatments of Co and Cu reduced the mineral (Mn, Zn and K) uptake. Co and Cu applied alone or in combination at rate of 50 µM resulted in the significant reduction of plant growth and increase of oxidative stress (ROS and MDA), and meanwhile the capacity of scavenging active oxygen species (AOS) was enhanced, reflected by increased phytochelatin (PC) and glutathione (GSH and GSSG) content, as well as expression of the related genes (HvPCS1 and HvGR1). Yan66, a Co tolerant genotype was less affected in oxidative stress, and had higher AOS scavenging capacity in comparison with Ea52, a Co sensitive one. Among three HvSOD isoforms, only HvFeSOD expression was up-regulated in the combined treatment relative to control as well as the treatment of Co or Cu alone, while HvCuZnSOD and HvMnSOD were down-regulated and unaffected, respectively. In addition, the expressions of metal transporter genes (HvHMA2, HvHMA3 and HvHMA5) varied with genotype and metal treatments, with the extent being greater in Yan66 on the whole. The results suggest that upon longer exposure to the combined stress of Co and Cu, the greater phyto-toxicity than each element alone is associated with more Cu accumulation stimulated by Co and that, the higher regulation of transporter genes observed in Yan66 could in part explain for its higher metal tolerance ability.


Assuntos
Cobalto/toxicidade , Cobre/toxicidade , Resistência a Medicamentos/genética , Hordeum/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Interações Medicamentosas , Genótipo , Glutationa/metabolismo , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hidroponia , Fitoquelatinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
7.
Ecotoxicol Environ Saf ; 180: 234-241, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31096127

RESUMO

Cobalt (Co) commonly co-exists with copper (Cu) in natural soils, but the information about their combined effects on plants is poorly available. In this study, we hydroponically investigated the combined effects of Co and Cu on two barley genotypes differing in Co toxicity tolerance to reveal the interaction pattern of these two metals. The results showed that single treatment of Co or Cu at the dose of 100 µM led to a significant decrease of growth and photosynthetic rate, and a significant increase of lipid peroxidation, ROS radicals as well as anti-oxidative enzyme (SOD, CAT and GR) activities and glutathione content, with the extent of effect being less in Yan66 than Ea52. The combined treatment of Co and Cu alleviated the toxicity of both metals in comparison with each metal treatment alone, as reflected by improved growth and photosynthesis, and much slight oxidative stress. The alleviation of metal toxicity upon combined treatment is mainly attributed to a drastic reduction of Co uptake and its translocation from roots to shoots. It may be suggested that interaction of Co and Cu on their uptake and movement in plants is antagonistic.


Assuntos
Cobalto/toxicidade , Cobre/toxicidade , Hordeum/efeitos dos fármacos , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Interações Medicamentosas , Glutationa/metabolismo , Hordeum/enzimologia , Hordeum/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos
8.
Plant Physiol Biochem ; 130: 589-603, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30121511

RESUMO

Arsenic (As) is a ubiquitous metalloid and toxic to plants. Chemical similarity between arsenate and phosphate (P) indicates possible antagonism between them in uptake and transportation. However, there is little study to reveal the interaction of As and P at transcriptional level. In this study RNA-sequencing was conducted on the two barley genotypes differing in As tolerance. A total of 2942 differentially expressed genes (DEGs) were inclusively expressed in both genotypes under As (100 µM) and As (100 µM) + P (50 µM), and these DEGs included hormonal signaling, stress responsive, transport related and transcription factors. P addition in the culture solution inhibited the KEGG pathways related to ABC transporters, ether lipid metabolism, linolenic acid metabolism, endocytosis and RNA transport. ZDB160 had a higher expression of DEGs associated with hormone signaling, secondary metabolites and stress defense under P conditions compared to ZDB475, which might explain its tolerance mechanism to As under P condition. The abscisic acid, jasmonic acid and salicylic acid signaling pathways were also significantly regulated under As + P conditions, which may also account for genotypic differences. Finally we drew up a hypothetical model of high As + P stress tolerance mechanism in ZDB160. It may be concluded that ZDB160 achieves its tolerance to As under P by up-regulating P transporters, resulting in more P uptake and less As translocation. The identified candidate genes related to As + P tolerance may provide insights into understanding As tolerance under limited P conditions.


Assuntos
Arseniatos/farmacologia , Arsênio/toxicidade , Hordeum/efeitos dos fármacos , Fosfatos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genótipo , Hordeum/genética , Hordeum/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Proteínas de Transporte de Fosfato/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
9.
Ecotoxicol Environ Saf ; 139: 488-495, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28231558

RESUMO

Cobalt (Co) contamination in soils is becoming a severe issue in environment safety and crop production. Calcium (Ca), as a macro-nutrient element, shows the antagonism with many divalent heavy metals and the capacity of alleviating oxidative stress in plants. In this study, the protective role of Ca in alleviating Co stress was hydroponically investigated using two barley genotypes differing in Co toxicity tolerance. Barley seedlings exposed to 100µM Co showed the significant reduction in growth and photosynthetic rate, and the dramatic increase in the contents of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH) and oxidized glutathione (GSSG), and the activities of anti-oxidative enzymes, with Ea52 (Co-sensitive) being much more affected than Yan66 (Co-tolerant). Addition of Ca in growth medium alleviated Co toxicity by reducing Co uptake and enhancing the antioxidant capacity. The effect of Ca in alleviating Co toxicity was much greater in Yan66 than in Ea52. The results indicate that the alleviation of Co toxicity in barley plants by Ca is attributed to the reduced Co uptake and enhanced antioxidant capacity.


Assuntos
Cálcio/farmacologia , Cobalto/toxicidade , Hordeum/efeitos dos fármacos , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Interações Medicamentosas , Genótipo , Glutationa/metabolismo , Hordeum/genética , Hordeum/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...