Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Retrovirology ; 6: 44, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19439089

RESUMO

BACKGROUND: Tenofovir disoproxil fumarate (TDF), emtricitabine (FTC), and efavirenz (EFV) are the three components of the once-daily, single tablet regimen (Atripla) for treatment of HIV-1 infection. Previous cell culture studies have demonstrated that the double combination of tenofovir (TFV), the parent drug of TDF, and FTC were additive to synergistic in their anti-HIV activity, which correlated with increased levels of intracellular phosphorylation of both compounds. RESULTS: In this study, we demonstrated the combinations of TFV+FTC, TFV+EFV, FTC+EFV, and TFV+FTC+EFV synergistically inhibit HIV replication in cell culture and synergistically inhibit HIV-1 reverse transcriptase (RT) catalyzed DNA synthesis in biochemical assays. Several different methods were applied to define synergy including median-effect analysis, MacSynergyII and quantitative isobologram analysis. We demonstrated that the enhanced formation of dead-end complexes (DEC) by HIV-1 RT and TFV-terminated DNA in the presence of FTC-triphosphate (TP) could contribute to the synergy observed for the combination of TFV+FTC, possibly through reduced terminal NRTI excision. Furthermore, we showed that EFV facilitated efficient formation of stable, DEC-like complexes by TFV- or FTC-monophosphate (MP)-terminated DNA and this can contribute to the synergistic inhibition of HIV-1 RT by TFV-diphosphate (DP)+EFV and FTC-TP+EFV combinations. CONCLUSION: This study demonstrated a clear correlation between the synergistic antiviral activities of TFV+FTC, TFV+EFV, FTC+EFV, and TFV+FTC+EFV combinations and synergistic HIV-1 RT inhibition at the enzymatic level. We propose the molecular mechanisms for the TFV+FTC+EFV synergy to be a combination of increased levels of the active metabolites TFV-DP and FTC-TP and enhanced DEC formation by a chain-terminated DNA and HIV-1 RT in the presence of the second and the third drug in the combination. This study furthers the understanding of the longstanding observations of synergistic anti-HIV-1 effects of many NRTI+NNRTI and certain NRTI+NRTI combinations in cell culture, and provides biochemical evidence that combinations of anti-HIV agents can increase the intracellular drug efficacy, without increasing the extracellular drug concentrations.


Assuntos
Adenina/análogos & derivados , Fármacos Anti-HIV/farmacologia , Benzoxazinas/farmacologia , Desoxicitidina/análogos & derivados , HIV-1/efeitos dos fármacos , Organofosfonatos/farmacologia , Replicação Viral/efeitos dos fármacos , Adenina/farmacologia , Alcinos , Linhagem Celular , Ciclopropanos , DNA Viral/biossíntese , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Emtricitabina , Transcriptase Reversa do HIV/antagonistas & inibidores , Humanos , Tenofovir
2.
J Acquir Immune Defic Syndr ; 48(4): 428-36, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18614922

RESUMO

BACKGROUND: The K65R mutation in human immunodeficiency virus type 1 reverse transcriptase can be selected by abacavir, didanosine, tenofovir, and stavudine in vivo resulting in reduced susceptibility to these drugs and decreased viral replication capacity. In clinical isolates, K65R is frequently accompanied by the A62V and S68G reverse transcriptase mutations. METHODS: The role of A62V and S68G in combination with K65R was investigated using phenotypic, viral growth competition, pre-steady-state kinetic, and excision analyses. RESULTS: Addition of A62V and S68G to K65R caused no significant change in human immunodeficiency virus type 1 resistance to abacavir, didanosine, tenofovir, or stavudine but partially restored the replication defect of virus containing K65R. The triple mutant K65R+A62V+S68G still showed some replication defect compared with wild-type virus. Pre-steady-state kinetic analysis demonstrated that K65R resulted in a decreased rate of incorporation (kpol) for all natural dNTPs, which were partially restored to wild-type levels by addition of A62V and S68G. When added to K65R and S68G, the A62V mutation seemed to restore adenosine triphosphate-mediated excision of tenofovir to wild-type levels. CONCLUSIONS: A62V and S68G serve as partial compensatory mutations for the K65R mutation in reverse transcriptase by improving the viral replication capacity, which is likely due to increased incorporation efficiency of the natural substrates.


Assuntos
Adenina/análogos & derivados , Didanosina/farmacologia , Didesoxinucleosídeos/farmacologia , Infecções por HIV/virologia , Transcriptase Reversa do HIV/efeitos dos fármacos , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Organofosfonatos/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Estavudina/farmacologia , Adenina/farmacologia , Terapia Antirretroviral de Alta Atividade , Farmacorresistência Viral Múltipla/genética , Mutação Puntual , Tenofovir , Replicação Viral
3.
Antimicrob Agents Chemother ; 51(8): 2911-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17517852

RESUMO

The ATP-dependent phosphorolytic excision of nucleoside analogue reverse transcriptase inhibitors can diminish their inhibitory effects on human immunodeficiency virus replication. Previous studies have shown that excision can occur only when the reverse transcriptase complex exists in its pretranslocational state. Binding of the next complementary nucleotide causes the formation of a stable dead-end complex in the posttranslocational state, which blocks the excision reaction. To provide mechanistic insight into the excision of the acyclic phosphonate nucleotide analog tenofovir, we compared the efficiencies of the reaction in response to changes in the translocation status of the enzyme. We found that rates of excision of tenofovir with wild-type reverse transcriptase can be as high as those seen with 3'-azido-3'-deoxythymidine monophosphate (AZT-MP). Thymidine-associated mutations, which confer >100-fold and 3-fold decreased susceptibility to AZT and tenofovir, respectively, caused substantial increases in the efficiency of excision of both inhibitors. However, in contrast to the case for AZT-MP, the removal of tenofovir was highly sensitive to dead-end complex formation. Site-specific footprinting experiments revealed that complexes with AZT-terminated primers exist predominantly pretranslocation. In contrast, complexes with tenofovir-terminated primers are seen in both configurations. Low concentrations of the next nucleotide are sufficient to trap the complex posttranslocation despite the flexible, acyclic character of the compound. Thus, the relatively high rate of excision of tenofovir is partially neutralized by the facile switch to the posttranslocational state and by dead-end complex formation, which provides a degree of protection from excision in the cellular environment.


Assuntos
Adenina/análogos & derivados , Fármacos Anti-HIV/metabolismo , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , Organofosfonatos/metabolismo , Inibidores da Transcriptase Reversa/metabolismo , Adenina/metabolismo , Adenina/farmacologia , Trifosfato de Adenosina/metabolismo , Fármacos Anti-HIV/farmacologia , Sequência de Bases , Farmacorresistência Viral , Transcriptase Reversa do HIV/genética , HIV-1/enzimologia , HIV-1/genética , Humanos , Cinética , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Organofosfonatos/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Tenofovir , Zidovudina/análogos & derivados , Zidovudina/química , Zidovudina/metabolismo , Zidovudina/farmacologia
4.
Antivir Chem Chemother ; 18(6): 307-16, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18320935

RESUMO

The HIV-1 reverse transcriptase (RT) resistance mutations K65R and M184V occur individually and in combination, and can contribute to decreased treatment responses in patients. In order to understand how these mutations interact with one another to confer drug resistance, the susceptibilities and underlying resistance mechanisms of these mutants to nucleoside RT inhibitors (NRTIs) were determined. Virus carrying K65R have reduced susceptibility to most NRTIs, but retain full susceptibility to zidovudine (AZT). M184V mutants have reduced susceptibility to lamivudine (3TC), emtricitabine (FTC) and didanosine (ddl), and contribute to reduced susceptibility to abacavir; however, they remain fully susceptible to tenofovir (TFV), AZT and stavudine (d4T). In cell culture, the K65R+M184V virus showed slightly increased susceptibility to TFV, AZT and d4T compared with K65R alone, but showed further decreases in susceptibility to 3TC, FTC, ddl and abacavir. There are two major biochemical mechanisms of resistance: altered NRTI binding/incorporation and altered NRTI excision after incorporation. For most NRTIs, the primary mechanism of resistance by K65R, M184V and K65R+M184V mutant RTs is to disrupt the NRTI-binding/incorporation steps. In the case of AZT, however, decreased binding/incorporation by K65R and K65R+M184V was counteracted by decreased AZT excision resulting in wild-type susceptibility. For TFV, decreased excision by K65R and K65R+M184V may partially counteract the K65R-driven decrease in incorporation relative to wild-type resulting in only low levels of TFV resistance. The K65R-mediated effect on decreasing NRTI excision was stronger than for M184V. These studies show that both mechanisms of resistance (binding/incorporation and excision) must be considered when defining resistance mechanisms.


Assuntos
Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/genética , HIV-1/enzimologia , HIV-1/genética , Mutação , Nucleosídeos/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Infecções por HIV/virologia , Transcriptase Reversa do HIV/metabolismo , Humanos , Cinética , Inibidores da Transcriptase Reversa/metabolismo
5.
Antivir Ther ; 11(2): 155-63, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16640096

RESUMO

The HIV-1 nucleoside reverse transcriptase inhibitors (NRTIs) tenofovir (TFV), abacavir, didanosine and stavudine can select for K65R, whereas zidovudine (AZT) and stavudine can select for thymidine analogue mutations (TAMs) in HIV-1 reverse transcriptase (RT). HIV-1 with TAMs shows reduced susceptibility to all NRTIs, most notably AZT, whereas HIV-1 with K65R shows reduced susceptibility to all NRTIs except AZT. K65R and TAMs rarely occur together in patients. However, when present together, K65R can restore susceptibility to AZT. This study characterizes the underlying mechanisms of resistance of these RT mutants to TFV and AZT. K65R mediated decreased binding/incorporation of TFV and AZT (increased Ki/Km of 7.1- and 4.3-fold, respectively), but also decreased excision of TFV and AZT (0.7- and 0.3-fold, respectively) when compared with wild-type RT. By contrast, TAMs mediated increased TFV and AZT excision (11- and 5.4-fold, respectively), and showed no changes in binding/incorporation. When these mutations were combined, K65R reversed TAM-mediated AZT resistance by strongly reducing AZT excision. Molecular modelling studies suggest that K65R creates additional hydrogen bonds that reduce the conformational mobility of RT, resulting in reduced polymerization and excision. Thus, consistent with clinical HIV-1 genotyping data, there appears to be no net NRTI resistance benefit for TAMs and K65R to develop together in patients taking AZT and TFV disoproxil fumarate, where the TAM pathway alone provides the greatest resistance for both drugs.


Assuntos
Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Mutação/genética , Zidovudina/farmacologia , Linhagem Celular , HIV-1/genética , Humanos , Modelos Moleculares , Fenótipo , Ligação Proteica , Inibidores da Transcriptase Reversa/farmacologia
6.
AIDS ; 19(16): 1751-60, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16227782

RESUMO

OBJECTIVE: To determine the mechanisms of resistance of K65R mutant reverse transcriptase (RT) to the currently approved nucleoside and nucleotide RT inhibitors (NRTI). METHODS: Susceptibilities of K65R mutant HIV-1 to NRTI were determined in cell culture. The Ki/Km values were measured to determine the relative binding or incorporation of the NRTI, and ATP-mediated excision of incorporated NRTI was measured to determine NRTI stability as chain terminators. RESULTS: K65R HIV-1 had decreased susceptibility to most NRTI, but increased susceptibility to zidovudine (ZDV). Ki/Km values were increased 2- to 13-fold for K65R compared to wild-type RT for all NRTI, indicating decreased binding or incorporation. However, K65R also showed decreased excision of all NRTI compared to wild-type, indicating greater stability once incorporated. At physiological nucleotide concentrations, excision of ZDV, carbovir (the active metabolite of abacavir; ABC), stavudine (d4T), and tenofovir was further decreased, while excision of didanosine (ddI), zalcitabine (ddC), lamivudine (3TC), and emtricitabine (FTC) was unchanged. The decreased binding or incorporation of ZDV by K65R appeared counteracted by decreased excision resulting in overall increased susceptibility to ZDV in cell culture. For ABC, tenofovir, and d4T, despite having decreased excision, decreased binding or incorporation resulted in reduced susceptibilities to K65R. For ddI, ddC, 3TC, and FTC, decreased binding or incorporation by K65R appeared responsible for the decreased susceptibilities in cell culture. CONCLUSIONS: NRTI resistance in cells can consist of both altered binding or incorporation and altered excision of the NRTI. For K65R, the combination of these opposing mechanisms results in decreased susceptibility to most NRTI but increased susceptibility to ZDV.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/genética , HIV-1/genética , Inibidores da Transcriptase Reversa/uso terapêutico , Células Cultivadas , Transcriptase Reversa do HIV/antagonistas & inibidores , Humanos , Testes de Sensibilidade Microbiana , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...