Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Clin Pharmacokinet ; 62(4): 587-598, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869986

RESUMO

BACKGROUND AND OBJECTIVE: In the USA, cabozantinib was approved for the treatment of patients aged ≥ 12 years with radioiodine-refractory differentiated thyroid cancer (DTC) who progressed on prior vascular endothelial growth factor (VEGFR)-targeted therapy based on the Phase 3 COSMIC-311 trial, which evaluated cabozantinib 60 mg/day versus placebo. Approved dosing is 60 mg/day for adults and for pediatric patients aged ≥ 12 years with body surface area (BSA) ≥ 1.2 m2, and 40 mg/day for pediatric patients aged ≥ 12 years with BSA < 1.2 m2. This report describes a population pharmacokinetic (PopPK) and exposure-response analysis of COSMIC-311. METHODS: A PopPK model was developed using concentration-time data from COSMIC-311 and 6 other cabozantinib studies. The final (full) PopPK model was used to simulate the effect of sex, body weight, race, and patient population. For exposure-response analysis, derived datasets from COSMIC-311 were constructed for time-to-event analyses of progression-free survival (PFS) and safety endpoints. RESULTS: The PopPK analysis included 4746 cabozantinib PK samples from 1745 patients and healthy volunteers. Body weight had minimal impact on cabozantinib exposure but increasing body weight was associated with increased apparent volume of distribution. Based on model-based simulation, adolescents < 40 kg had higher maximum plasma concentration at steady state of cabozantinib 60 mg/day compared to adults. Allometric scaling simulation in adolescents < 40 kg demonstrated higher exposure with 60 mg/day relative to adults receiving the same dose, while exposure with 40 mg/day in adolescents < 40 kg was similar to 60 mg/day in adults. The exposure-response analysis included 115 patients. There was no clear relationship between PFS or dose modification and cabozantinib exposure. A statistically significant relationship was demonstrated for cabozantinib exposure and hypertension (Grade ≥ 3) and fatigue/asthenia (Grade ≥ 3). CONCLUSIONS: These results support the dosing strategy implemented in COSMIC-311 and the BSA-based label recommendations for adolescents. The cabozantinib dose should be reduced to manage adverse events as indicated.


Assuntos
Antineoplásicos , Neoplasias da Glândula Tireoide , Adulto , Adolescente , Humanos , Criança , Radioisótopos do Iodo/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/induzido quimicamente , Piridinas , Anilidas/uso terapêutico
2.
Artigo em Inglês | MEDLINE | ID: mdl-28096154

RESUMO

The impact of quorum sensing on polymyxin and azithromycin pharmacodynamics was assessed in Pseudomonas aeruginosa PAO1 and an isogenic rhlR/lasR double knockout. For polymyxin B, greater killing against the rhlR/lasR knockout than against PAO1 was observed at 108 CFU/ml (polymyxin B half-maximal effective concentration [EC50], 5.61 versus 12.5 mg/liter, respectively; P < 0.005). Polymyxin B combined with azithromycin (256 mg/liter) was synergistic against each strain, significantly reducing the respective polymyxin B EC50 compared to those with monotherapy (P < 0.005), and is a promising strategy by which to combat P. aeruginosa.


Assuntos
Azitromicina/farmacologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Polimixina B/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Transativadores/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Sinergismo Farmacológico , Concentração Inibidora 50 , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum/genética , Transativadores/deficiência
3.
Int J Antimicrob Agents ; 49(2): 224-232, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28040408

RESUMO

Combination therapy provides a useful therapeutic approach to overcome resistance until new antibiotics become available. In this study, the pharmacodynamics, including the morphological effects, of polymyxin B (PMB) and meropenem alone and in combination against KPC-producing Klebsiella pneumoniae clinical isolates was examined. Ten clinical isolates were obtained from patients undergoing treatment for mediastinitis. KPCs were identified and MICs were measured using microbroth dilution. Time-kill studies were conducted over 24 h with PMB (0.5-16 mg/L) and meropenem (20-120 mg/L) alone or in combination against an initial inoculum of ca. 106 CFU/mL. Scanning electron microscopy (SEM) was employed to analyse changes in bacterial morphology after treatment, and the log change method was used to quantify the pharmacodynamic effect. All isolates harboured the blaKPC-2 gene and were resistant to meropenem (MICs ≥8 mg/L). Clinically relevant PMB concentrations (0.5, 1.0 and 2.0 mg/L) in combination with meropenem were synergistic against all isolates except BRKP28 (polymyxin- and meropenem-resistant, both MICs >128 mg/L). All PMB and meropenem concentrations in combination were bactericidal against polymyxin-susceptible isolates with meropenem MICs ≤16 mg/L. SEM revealed extensive morphological changes following treatment with PMB in combination with meropenem compared with the changes observed with each individual agent. Additionally, morphological changes decreased with increasing resistance profiles of the isolate, i.e. increasing meropenem MIC. These antimicrobial effects may not only be a summation of the effects due to each antibiotic but also a result of differential action that likely inhibits protective mechanisms in bacteria.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Polimixina B/farmacologia , Tienamicinas/farmacologia , Resistência beta-Lactâmica , Sinergismo Farmacológico , Humanos , Klebsiella pneumoniae/citologia , Klebsiella pneumoniae/isolamento & purificação , Meropeném , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Varredura
4.
Artigo em Inglês | MEDLINE | ID: mdl-27795367

RESUMO

Ertapenem provides broad-spectrum activity against many pathogens, and its use is relevant for the prophylaxis and treatment of infections in morbidly obese patients undergoing surgery. However, its pharmacokinetics and tissue penetration in these patients are not well defined. We assessed the population pharmacokinetics and target attainment for ertapenem in the plasma, subcutaneous tissue, and peritoneal fluid of morbidly obese patients. Six female patients (body mass index, 43.7 to 55.9 kg/m2) received 1,000 mg ertapenem as 15-min infusions at 0 and 26 h. On day 2, the unbound ertapenem concentrations in plasma, subcutaneous tissue, and peritoneal fluid were measured by microdialysis; total plasma concentrations were additionally quantified. The probability of attaining a target of an unbound ertapenem concentration above the MIC for at least 40% of the dosing interval was predicted via Monte Carlo simulations. The population pharmacokinetic model contained two disposition compartments and simultaneously described all concentrations. For unbound ertapenem, total clearance was 12.3 liters/h (coefficient of variation, 21.6% for between-patient variability) and the volume of distribution at steady state was 57.8 liters in patients with a 53-kg fat-free mass. The area under the concentration-time curve (AUC) for ertapenem was 49% lower in subcutaneous tissue and 25% lower in peritoneal fluid than the unbound AUC in plasma. Tissue penetration was rapid (equilibration half-life, <15 min) and was variable in subcutaneous tissue. Short-term ertapenem infusions (1,000 mg every 24 h) achieved robust (>90%) target attainment probabilities for MICs of up to 1 mg/liter in plasma, 0.25 to 0.5 mg/liter in subcutaneous tissue, and 0.5 mg/liter in peritoneal fluid. Ertapenem presents an attractive choice for many pathogens relevant to morbidly obese patients undergoing surgery. (This study has been registered at ClinicalTrials.gov under identifier NCT01407965.).


Assuntos
Obesidade Mórbida/sangue , beta-Lactamas/farmacocinética , beta-Lactamas/uso terapêutico , Adulto , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Ertapenem , Feminino , Humanos , Laparoscopia , Testes de Sensibilidade Microbiana , Microdiálise , Pessoa de Meia-Idade , Método de Monte Carlo , Obesidade Mórbida/terapia
5.
Int. j. antimicrob. agents ; 49(2): 2-9, 2017. ilus, tab, graf
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1063523

RESUMO

Combination therapy provides a useful therapeutic approach to overcome resistance until new antibiotics become available. In this study, the pharmacodynamics, including the morphological effects, ofpolymyxin B (PMB) and meropenem alone and in combination against KPC-producing Klebsiella pneumoniaeclinical isolates was examined. Ten clinical isolates were obtained from patients undergoing treatmentfor mediastinitis. KPCs were identified and MICs were measured using microbroth dilution. Time–killstudies were conducted over 24 h with PMB (0.5–16 mg/L) and meropenem (20–120 mg/L) alone or incombination against an initial inoculum of ca. 106 CFU/mL. Scanning electron microscopy (SEM) was employedto analyse changes in bacterial morphology after treatment, and the log change method was usedto quantify the pharmacodynamic effect. All isolates harboured the blaKPC-2 gene and were resistant tomeropenem (MICs ≥8 mg/L). Clinically relevant PMB concentrations (0.5, 1.0 and 2.0 mg/L) in combinationwith meropenem were synergistic against all isolates except BRKP28 (polymyxin- and meropenemresistant,both MICs >128 mg/L). All PMB and meropenem concentrations in combination were bactericidalagainst polymyxin-susceptible isolates with meropenem MICs ≤16 mg/L. SEM revealed extensive morphologicalchanges following treatment with PMB in combination with meropenem compared with thechanges observed with each individual agent. Additionally, morphological changes decreased with increasingresistance profiles of the isolate, i.e. increasing meropenem MIC. These antimicrobial effects maynot only be a summation of the effects due to each antibiotic but also a result of differential action thatlikely inhibits protective mechanisms in bacteria...


Assuntos
Klebsiella pneumoniae , Polimixina B
6.
J Antimicrob Chemother ; 71(11): 3148-3156, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27494922

RESUMO

OBJECTIVES: Polymyxin B is being increasingly utilized as a last resort against resistant Gram-negative bacteria. We examined the pharmacodynamics of novel dosing strategies for polymyxin B combinations to maximize efficacy and minimize the emergence of resistance and drug exposure against Acinetobacter baumannii. METHODS: The pharmacodynamics of polymyxin B together with doripenem were evaluated in time-kill experiments over 48 h against 108 cfu/mL of two polymyxin-heteroresistant A. baumannii isolates (ATCC 19606 and N16870). Pharmacokinetic/pharmacodynamic relationships were mathematically modelled using S-ADAPT. A hollow-fibre infection model (HFIM) was also used to simulate clinically relevant polymyxin B dosing strategies (traditional, augmented 'front-loaded' and 'burst' regimens), together with doripenem, against an initial inoculum of 109 cfu/mL of ATCC 19606. RESULTS: In static time-kill studies, polymyxin B concentrations >4 mg/L in combination with doripenem 25 mg/L resulted in rapid bactericidal activity against both strains with undetectable bacterial counts by 24 h. The mathematical model described the rapid, concentration-dependent killing as subpopulation and mechanistic synergy. In the HFIM, the traditional polymyxin B combination regimen was synergistic, with a >7.5 log10 reduction by 48 h. The polymyxin B 'front-loaded' combination resulted in more rapid and extensive initial killing (>8 log10) within 24 h, which was sustained over 10 days. With only 25% of the cumulative drug exposure, the polymyxin B 'burst' combination demonstrated antibacterial activity similar to traditional and 'front-loaded' combination strategies. The polymyxin B 'front-loaded' and 'burst' combination regimens suppressed the emergence of resistance. CONCLUSIONS: Early aggressive dosing regimens for polymyxin combinations demonstrate promise for treatment of heteroresistant A. baumannii infections.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/administração & dosagem , Carbapenêmicos/administração & dosagem , Polimixina B/administração & dosagem , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Carbapenêmicos/farmacocinética , Carbapenêmicos/farmacologia , Doripenem , Farmacorresistência Bacteriana , Quimioterapia Combinada/métodos , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Modelos Teóricos , Polimixina B/farmacocinética , Polimixina B/farmacologia
7.
Int J Antimicrob Agents ; 48(3): 331-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27449542

RESUMO

The prevalence of heteroresistant Acinetobacter baumannii is increasing. Infections due to these resistant pathogens pose a global treatment challenge. Here, the pharmacodynamic activities of polymyxin B (PMB) (2-20 mg/L) and tigecycline (0.15-4 mg/L) were evaluated as monotherapy and in combination using a 4 × 4 concentration array against two carbapenem-resistant and polymyxin-heteroresistant A. baumannii isolates. Time Kill Experiments was employed at starting inocula of 10(6) and 10(8) CFU/mL over 48 h. Clinically relevant combinations of PMB (2 mg/L) and tigecycline (0.90 mg/L) resulted in greater reductions in the bacterial population compared with polymyxin alone by 8 h (ATCC 19606, -6.38 vs. -3.43 log10 CFU/mL; FADDI AB115, -1.38 vs. 2.08 log10 CFU/mL). At 10× the clinically achievable concentration (PMB 20 mg/L in combination with tigecycline 0.90 mg/L), there was bactericidal activity against FADDI AB115 by 4 h that was sustained until 32 h, and against ATCC 19606 that was sustained for 48 h. These studies show that aggressive polymyxin-based dosing in combination with clinically achievable tigecycline concentrations results in early synergistic activity that is not sustained beyond 8 h, whereas combinations with higher tigecycline concentrations result in sustained bactericidal activity against both isolates at both inocula. These results indicate a need for optimised front-loaded polymyxin-based combination regimens that utilise high polymyxin doses at the onset of treatment to achieve good pharmacodynamic activity whilst minimising adverse events.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Minociclina/análogos & derivados , Polimixina B/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Minociclina/farmacologia , Tigeciclina , Fatores de Tempo
8.
Antimicrob Agents Chemother ; 60(5): 2870-80, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26926641

RESUMO

Development of spontaneous mutations in Pseudomonas aeruginosa has been associated with antibiotic failure, leading to high rates of morbidity and mortality. Our objective was to evaluate the pharmacodynamics of polymyxin B combinations against rapidly evolving P. aeruginosa mutator strains and to characterize the time course of bacterial killing and resistance via mechanism-based mathematical models. Polymyxin B or doripenem alone and in combination were evaluated against six P. aeruginosa strains: wild-type PAO1, mismatch repair (MMR)-deficient (mutS and mutL) strains, and 7,8-dihydro-8-oxo-deoxyguanosine system (GO) base excision repair (BER)-deficient (mutM, mutT, and mutY) strains over 48 h. Pharmacodynamic modeling was performed using S-ADAPT and facilitated by SADAPT-TRAN. Mutator strains displayed higher mutation frequencies than the wild type (>600-fold). Exposure to monotherapy was followed by regrowth, even at high polymyxin B concentrations of up to 16 mg/liter. Polymyxin B and doripenem combinations displayed enhanced killing activity against all strains where complete eradication was achieved for polymyxin B concentrations of >4 mg/liter and doripenem concentrations of 8 mg/liter. Modeling suggested that the proportion of preexisting polymyxin B-resistant subpopulations influenced the pharmacodynamic profiles for each strain uniquely (fraction of resistance values are -8.81 log10 for the wild type, -4.71 for the mutS mutant, and -7.40 log10 for the mutM mutant). Our findings provide insight into the optimization of polymyxin B and doripenem combinations against P. aeruginosa mutator strains.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Polimixina B/farmacologia , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/genética , Doripenem , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Mutação/genética , Pseudomonas aeruginosa/efeitos dos fármacos
9.
Antimicrob Agents Chemother ; 59(7): 4343-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25918151

RESUMO

The interplay between polymyxin B pharmacodynamics and pathogenicity was examined in Pseudomonas aeruginosa PAO1 and isogenic DNA repair-deficient mutators (mutM and mutS strains). Against mutS mutators, polymyxin B initial killing was concentration dependent, with >99.9% bacterial reduction at 2 h followed by regrowth and resistance. The pre- versus postexposed strains were inoculated real time into Galleria mellonella waxworms, resulting in increased median survival times from 20 h to 23 h (P < 0.001). Emergence of resistance in mutS P. aeruginosa resulted in attenuation of virulence.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Polimixina B/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Animais , Fibrose Cística/microbiologia , Reparo do DNA/genética , Estimativa de Kaplan-Meier , Testes de Sensibilidade Microbiana , Mariposas , Mutação/genética , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Sobrevida , Análise de Sobrevida
10.
Antimicrob Agents Chemother ; 59(4): 2315-27, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645838

RESUMO

Bacterial resistance is among the most serious threats to human health globally, and many bacterial isolates have emerged that are resistant to all antibiotics in monotherapy. Aminoglycosides are often used in combination therapies against severe infections by multidrug-resistant bacteria. However, models quantifying different antibacterial effects of aminoglycosides are lacking. While the mode of aminoglycoside action on protein synthesis has often been studied, their disruptive action on the outer membrane of Gram-negative bacteria remains poorly characterized. Here, we developed a novel quantitative model for these two mechanisms of aminoglycoside action, phenotypic tolerance at high bacterial densities, and adaptive bacterial resistance in response to an aminoglycoside (tobramycin) against three Pseudomonas aeruginosa strains. At low-intermediate tobramycin concentrations (<4 mg/liter), bacterial killing due to the effect on protein synthesis was most important, whereas disruption of the outer membrane was the predominant killing mechanism at higher tobramycin concentrations (≥8 mg/liter). The extent of killing was comparable across all inocula; however, the rate of bacterial killing and growth was substantially lower at the 10(8.9) CFU/ml inoculum than that at the lower inocula. At 1 to 4 mg/liter tobramycin for strain PAO1-RH, there was a 0.5- to 6-h lag time of killing that was modeled via the time to synthesize hypothetical lethal protein(s). Disruption of the outer bacterial membrane by tobramycin may be critical to enhance the target site penetration of antibiotics used in synergistic combinations with aminoglycosides and thereby combat multidrug-resistant bacteria. The two mechanisms of aminoglycoside action and the new quantitative model hold great promise to rationally design novel, synergistic aminoglycoside combination dosage regimens.


Assuntos
Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Contagem de Colônia Microbiana , Simulação por Computador , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Modelos Biológicos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Tobramicina/metabolismo
11.
J Antimicrob Chemother ; 70(5): 1434-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712313

RESUMO

OBJECTIVES: Colistin is an 'old' drug, which is being increasingly utilized due to limited therapeutic options. However, resistance emergence during monotherapy is concerning. Here, our objective was to optimize colistin combinations against Pseudomonas aeruginosa by profiling the time course of synergistic killing and prevention of resistance. METHODS: Hollow-fibre infection models over 10 days simulated clinically relevant dosage regimens of colistin and doripenem against two heteroresistant P. aeruginosa strains (MIC 1 mg/L) and one resistant (MIC 128 mg/L) strain (inoculum 10(9.3) cfu/mL). New mathematical mechanism-based models (MBMs) were developed using S-ADAPT. RESULTS: Against heteroresistant P. aeruginosa strains, colistin monotherapy resulted in initial killing (up to 2.64 log10 cfu/mL) within 24 h followed by regrowth. High-intensity combinations involving free steady-state colistin concentrations of 5 mg/L achieved complete eradication (>9.3 log10 killing) within 48 h. These combinations achieved synergy with up to 9.38 log10 greater killing compared with the most active monotherapy. Against the colistin-resistant strain, the combination yielded marked initial synergy with up to 6.11 log10 cfu/mL bacterial reductions within 72 h followed by regrowth. The MBMs quantified total and resistant subpopulations and the proposed synergy between colistin and doripenem. CONCLUSIONS: Our findings provide insight into optimal antibiotic treatment and may serve as a framework for new drug combinations and combination modelling.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Doripenem , Humanos , Testes de Sensibilidade Microbiana , Modelos Teóricos , Pseudomonas aeruginosa/fisiologia , Fatores de Tempo
12.
Antimicrob Agents Chemother ; 58(3): 1381-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24342636

RESUMO

Increasing evidence suggests that colistin monotherapy is suboptimal at currently recommended doses. We hypothesized that front-loading provides an improved dosing strategy for polymyxin antibiotics to maximize killing and minimize total exposure. Here, we utilized an in vitro pharmacodynamic model to examine the impact of front-loaded colistin regimens against a high bacterial density (10(8) CFU/ml) of Pseudomonas aeruginosa. The pharmacokinetics were simulated for patients with hepatic (half-life [t1/2] of 3.2 h) or renal (t1/2 of 14.8 h) disease. Front-loaded regimens (n=5) demonstrated improvement in bacterial killing, with reduced overall free drug areas under the concentration-time curve (fAUC) compared to those with traditional dosing regimens (n=14) with various dosing frequencies (every 12 h [q12h] and q24h). In the renal failure simulations, front-loaded regimens at lower exposures (fAUC of 143 mg · h/liter) obtained killing activity similar to that of traditional regimens (fAUC of 268 mg · h/liter), with an ∼97% reduction in the area under the viable count curve over 48 h. In hepatic failure simulations, front-loaded regimens yielded rapid initial killing by up to 7 log10 within 2 h, but considerable regrowth occurred for both front-loaded and traditional regimens. No regimen eradicated the high bacterial inoculum of P. aeruginosa. The current study, which utilizes an in vitro pharmacodynamic infection model, demonstrates the potential benefits of front-loading strategies for polymyxins simulating differential pharmacokinetics in patients with hepatic and renal failure at a range of doses. Our findings may have important clinical implications, as front-loading polymyxins as a part of a combination regimen may be a viable strategy for aggressive treatment of high-bacterial-burden infections.


Assuntos
Antibacterianos/administração & dosagem , Colistina/administração & dosagem , Nefropatias/complicações , Hepatopatias/complicações , Infecções por Pseudomonas/tratamento farmacológico , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Colistina/farmacocinética , Colistina/uso terapêutico , Humanos , Técnicas In Vitro , Nefropatias/metabolismo , Hepatopatias/metabolismo , Modelos Biológicos , Infecções por Pseudomonas/complicações
13.
Antimicrob Agents Chemother ; 57(5): 2343-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23478962

RESUMO

Quantitative modeling of combination therapy can describe the effects of each antibiotic against multiple bacterial populations. Our aim was to develop an efficient experimental and modeling strategy that evaluates different synergy mechanisms using a rapidly killing peptide antibiotic (nisin) combined with amikacin or linezolid as probe drugs. Serial viable counts over 48 h were obtained in time-kill experiments with all three antibiotics in monotherapy against a methicillin-resistant Staphylococcus aureus USA300 strain (inoculum, 10(8) CFU/ml). A sequential design (initial dosing of 8 or 32 mg/liter nisin, switched to amikacin or linezolid at 1.5 h) assessed the rate of killing by amikacin and linezolid against nisin-intermediate and nisin-resistant populations. Simultaneous combinations were additionally studied and all viable count profiles comodeled in S-ADAPT and NONMEM. A mechanism-based model with six populations (three for nisin times two for amikacin) yielded unbiased and precise (r = 0.99, slope = 1.00; S-ADAPT) individual fits. The second-order killing rate constants for nisin against the three populations were 5.67, 0.0664, and 0.00691 liter/(mg · h). For amikacin, the maximum killing rate constants were 10.1 h(-1) against its susceptible and 0.771 h(-1) against its less-susceptible populations, with 14.7 mg/liter amikacin causing half-maximal killing. After incorporating the effects of nisin and amikacin against each population, no additional synergy function was needed. Linezolid inhibited successful bacterial replication but did not efficiently kill populations less susceptible to nisin. Nisin plus amikacin achieved subpopulation synergy. The proposed sequential and simultaneous dosing design offers an efficient approach to quantitatively characterize antibiotic synergy over time and prospectively evaluate antibiotic combination dosing strategies.


Assuntos
Acetamidas/farmacologia , Amicacina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Modelos Estatísticos , Nisina/farmacologia , Oxazolidinonas/farmacologia , Contagem de Colônia Microbiana , Cálculos da Dosagem de Medicamento , Sinergismo Farmacológico , Quimioterapia Combinada , Linezolida , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana
14.
Antimicrob Agents Chemother ; 57(4): 1730-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23357773

RESUMO

Monte Carlo simulations (MCS) present a powerful tool to evaluate candidate regimens by determining the probability of target attainment. Although these assessments have traditionally incorporated variability in pharmacokinetic (PK) parameters and MICs, consideration of interstrain pharmacodynamic (PD) variability has been neglected. A population PK/PD model was developed for doripenem using murine thigh infection data based on 20 bacterial strains. PK data were fit to a linear two-compartment model with first-order input and elimination processes and an absorption lag time from a separate site (r(2) > 0.96). PK parameters were utilized to simulate free-drug profiles for various regimens in PD studies, from which the percentage of the dosing interval for which free-drug concentrations exceed the MIC of the targeted strain (%fT>MIC) was calculated. Doripenem PD was excellently described with Hill-type models (r(2) > 0.98); significant differences between mean PD estimates determined using a two-stage approach versus population analyses were not observed (P > 0.05); however, the variance in 50% effective concentration (EC50) and maximum effect (Emax) among strains was much greater using the two-stage approach. Even using the population approach, interstrain variability in EC50 (coefficient of variation expressed as a percentage [CV%] = 29.2%) and H (CV% = 46.1%) parameters was substantive, while the variability in Emax (CV% = 19.7%) was modest. This resulted in extensive variability in the range of %fT>MIC targets associated with stasis to those associated with a 2-log10 reduction in bacterial burden (CV% ∼ 50%). It appears that MCS, based on the assumption that PD variability is due to MIC alone, underestimates variability and may consequently underestimate treatment failures.


Assuntos
Antibacterianos/farmacocinética , Carbapenêmicos/farmacocinética , Testes de Sensibilidade Microbiana/métodos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Doripenem , Camundongos , Método de Monte Carlo , Coxa da Perna/microbiologia
15.
Antimicrob Agents Chemother ; 56(6): 3453-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22470116

RESUMO

The in vitro pharmacodynamics of colistin against Pseudomonas aeruginosa PAO1 wild-type and isogenic knockout strains of phoP and pmrA were evaluated. Colistin killing at subinhibitory concentrations was greater against the phoP and pmrA mutants than the wild type within the first 8 h: the concentration that results in 50% of maximal effect (EC(50)) of the pmrA mutant (0.413 mg/liter) was less than that of the wild type (0.718 mg/liter) (P < 0.05). An in vitro pharmacodynamic model simulating human colistin regimens displayed initial killing followed by regrowth in the phoP mutant and gradual regrowth in the pmrA mutant and wild type.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Colistina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Fatores de Transcrição/genética
16.
Antimicrob Agents Chemother ; 54(5): 2051-62, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20211900

RESUMO

Colistin is increasingly being utilized against Gram-negative pathogens, including Pseudomonas aeruginosa, resistant to all other antibiotics. Since limited data exist regarding killing by colistin at different initial inocula (CFUo), we evaluated killing of Pseudomonas aeruginosa by colistin at several CFUo and developed a mechanism-based mathematical model accommodating a range of CFUo. In vitro time-kill experiments were performed using >or=8 concentrations up to 64 x the MIC of colistin against P. aeruginosa PAO1 and two clinical P. aeruginosa isolates at CFUo of 10(6), 10(8), and 10(9) CFU/ml. Serial samples up to 24 h were simultaneously modeled in the NONMEM VI (results shown) and S-ADAPT software programs. The mathematical model was prospectively "validated" by additional time-kill studies assessing the effect of Ca(2+) and Mg(2+) on killing of PAO1 by colistin. Against PAO1, killing of the susceptible population was 23-fold slower at the 10(9) CFUo and 6-fold slower at the 10(8) CFUo than at the 10(6) CFUo. The model comprised three populations with different second-order killing rate constants (5.72, 0.369, and 0.00210 liters/h/mg). Bacteria were assumed to release signal molecules stimulating a phenotypic change that inhibits killing. The proposed mechanism-based model had a good predictive performance, could describe killing by colistin for all three studied strains and for two literature studies, and performed well in a prospective validation with various concentrations of Ca(2+) and Mg(2+). The extent and rate of killing of P. aeruginosa by colistin were markedly decreased at high CFUo compared to those at low CFUo. This was well described by a mechanism-based mathematical model, which should be further validated using dynamic in vitro models.


Assuntos
Antibacterianos/farmacocinética , Colistina/farmacocinética , Modelos Biológicos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Ligação Competitiva , Cálcio/metabolismo , Farmacorresistência Bacteriana , Técnicas In Vitro , Magnésio/metabolismo , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/crescimento & desenvolvimento
17.
Antimicrob Agents Chemother ; 53(1): 46-56, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18852268

RESUMO

Evidence is mounting in support of the inoculum effect (i.e., slow killing at large initial inocula [CFUo]) for numerous antimicrobials against a variety of pathogens. Our objectives were to (i) determine the impact of the CFUo of Pseudomonas aeruginosa on ceftazidime activity and (ii) to develop and validate a pharmacokinetic/pharmacodynamic (PKPD) mathematical model accommodating a range of CFUo. Time-kill experiments using ceftazidime at seven concentrations up to 128 mg/liter (MIC, 2 mg/liter) were performed in duplicate against P. aeruginosa PAO1 at five CFUo from 10(5) to 10(9) CFU/ml. Samples were collected over 24 h and fit by candidate models in NONMEM VI and S-ADAPT 1.55 (all data were comodeled). External model qualification integrated data from eight previously published studies. Ceftazidime displayed approximately 3 to 4 log(10) CFU/ml net killing at 10(6.2) CFUo and concentrations of 4 mg/liter (or higher), less than 1.6 log(10) CFU/ml killing at 10(7.3) CFUo, and no killing at 10(8.0) CFUo for concentrations up to 128 mg/liter. The proposed mechanism-based model successfully described the inoculum effect and the concentration-independent lag time of killing. The mean generation time was 28.3 min. The effect of an autolysin was assumed to inhibit successful replication. Ceftazidime concentrations of 0.294 mg/liter stimulated the autolysin effect by 50%. The model was predictive in the internal cross-validation and had excellent in silico predictive performance for published studies of P. aeruginosa ATCC 27853 for various CFUo. The proposed PKPD model successfully described and predicted the pronounced inoculum effect of ceftazidime in vitro and integrated data from eight literature studies to support translation from time-kill experiments to in vitro infection models.


Assuntos
Ceftazidima/farmacologia , Modelos Teóricos , Pseudomonas aeruginosa/efeitos dos fármacos , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...