Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; : e202400320, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853751

RESUMO

Multifluorinated aromatics serve as supramolecular synthons in the research of organic electro-optic (EO) materials by exploiting π-π stacking interaction between the aromatic hydrocarbon and multifluorinated aromatic groups for performance improvement. However, non-classical hydrogen bonding remains largely unexplored in fluorinated EO dendrimers. In this study, three Fréchet-type generation 1 benzyl ether co-dendrons were synthesized by replacing one benzyl group with 2,3,5,6-tetrafluorobenzyl (p-HF4Bz), pentafluorobenzyl (C6F5Bz), and 2,3,4,5-tetrafluorobenzyl (o-HF4Bz) groups, to afford the benzoic acid derivatives D1, D2, and D3, which were further bonded to the donor and π-bridge moieties to afford three co-dendronized push-pull phenyltetraene chromophores EOD1, EOD2, and EOD3, respectively. The weak C-H⋅⋅⋅X (X=O, F) interactions in the crystal structure of D1 cumulatively add to the benzoic acid dimers to form an extended hydrogen-bonded network, while D2 is crystallized into a centric one-dimensional chain with strong intermolecular interactions. The poled films of EOD1 with PMMA exhibited the largest and most stable EO activity with optical homogeneity among the series. The results identify the effectiveness of weak but favorable hydrogen bonds enabled by the enhanced carbon acidity of p-HF4Bz synthon in D1, over the interactions in D2 and D3, for the rational design of supramolecular EO dendrimers.

2.
Micron ; 185: 103678, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38941681

RESUMO

The rich potential of two-dimensional materials endows them with superior properties suitable for a wide range of applications, thereby attracting substantial interest across various fields. The ongoing trend towards device miniaturization aligns with the development of materials at progressively smaller scales, aiming to achieve higher integration density in electronics. In the realm of nano-scaling ferroelectric phenomena, numerous new two-dimensional ferroelectric materials have been predicted theoretically and subsequently validated through experimental confirmation. However, the capabilities of conventional tools, such as electrical measurements, are limited in providing a comprehensive investigation into the intrinsic origins of ferroelectricity and its interactions with structural factors. These factors include stacking, doping, functionalization, and defects. Consequently, the progress of potential applications, such as high-density memory devices, energy conversion systems, sensing technologies, catalysis, and more, is impeded. In this paper, we present a review of recent research that employs advanced transmission electron microscopy (TEM) techniques for the direct visualization and analysis of ferroelectric domains, domain walls, and other crucial features at the atomic level within two-dimensional materials. We discuss the essential interplay between structural characteristics and ferroelectric properties on the nanoscale, which facilitates understanding of the complex relationships governing their behavior. By doing so, we aim to pave the way for future innovative applications in this field.

3.
Small Methods ; : e2400323, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940224

RESUMO

The graphene oxide (GO) membrane displays promising potential in efficiently filtering ions from water. However, the precise mechanism behind its effectiveness remains elusive, particularly due to the lack of direct experimental evidence at the atomic scale. To shed light on this matter, state-of-the-art techniques are employed such as integrated differential phase contrast-scanning transmission electron microscopy and electron energy loss spectroscopy, combined with reverse osmosis (RO) filtration experiments using GO membranes. The atomic-scale observations after the RO experiments directly reveal the binding of various ions including Na+, K+, Ca2+, and Fe3+ to the defects, edges, and functional groups of GO. The remarkable ion-sieving capabilities of GO membranes are confirmed, which can be attributed to a synergistic interplay of size exclusion, electrostatic interactions, cation-π, and other non-covalent interactions. Moreover, GO membranes modified by external pressure and cation also demonstrated further enhanced filtration performance for filtration. This study significantly contributes by uncovering the atomic-scale mechanism responsible for ion sieving in GO membranes. These findings not only enhance the fundamental understanding but also hold substantial potential for the advancement of GO membranes in reverse osmosis (RO) filtration.

4.
Small Methods ; : e2400211, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766949

RESUMO

2D materials are intriguing due to their remarkably thin and flat structure. This unique configuration allows the majority of their constituent atoms to be accessible on the surface, facilitating easier electron tunneling while generating weak surface forces. To decipher the subtle signals inherent in these materials, the application of techniques that offer atomic resolution (horizontal) and sub-Angstrom (z-height vertical) sensitivity is crucial. Scanning probe microscopy (SPM) emerges as the quintessential tool in this regard, owing to its atomic-level spatial precision, ability to detect unitary charges, responsiveness to pico-newton-scale forces, and capability to discern pico-ampere currents. Furthermore, the versatility of SPM to operate under varying environmental conditions, such as different temperatures and in the presence of various gases or liquids, opens up the possibility of studying the stability and reactivity of 2D materials in situ. The characteristic flatness, surface accessibility, ultra-thinness, and weak signal strengths of 2D materials align perfectly with the capabilities of SPM technologies, enabling researchers to uncover the nuanced behaviors and properties of these advanced materials at the nanoscale and even the atomic scale.

5.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645056

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a major health concern due to its high mortality from poor treatment responses and locoregional tumor invasion into life sustaining structures in the head and neck. A deeper comprehension of HNSCC invasion mechanisms holds the potential to inform targeted therapies that may enhance patient survival. We previously reported that doublecortin like kinase 1 (DCLK1) regulates invasion of HNSCC cells. Here, we tested the hypothesis that DCLK1 regulates proteins within invadopodia to facilitate HNSCC invasion. Invadopodia are specialized subcellular protrusions secreting matrix metalloproteinases that degrade the extracellular matrix (ECM). Through a comprehensive proteome analysis comparing DCLK1 control and shDCLK1 conditions, our findings reveal that DCLK1 plays a pivotal role in regulating proteins that orchestrate cytoskeletal and ECM remodeling, contributing to cell invasion. Further, we demonstrate in TCGA datasets that DCLK1 levels correlate with increasing histological grade and lymph node metastasis. We identified higher expression of DCLK1 in the leading edge of HNSCC tissue. Knockdown of DCLK1 in HNSCC reduced the number of invadopodia, cell adhesion and colony formation. Using super resolution microscopy, we demonstrate localization of DCLK1 in invadopodia and colocalization with mature invadopodia markers TKS4, TKS5, cortactin and MT1-MMP. We carried out phosphoproteomics and validated using immunofluorescence and proximity ligation assays, the interaction between DCLK1 and motor protein KIF16B. Pharmacological inhibition or knockdown of DCLK1 reduced interaction with KIF16B, secretion of MMPs, and cell invasion. This research unveils a novel function of DCLK1 within invadopodia to regulate the trafficking of matrix degrading cargo. The work highlights the impact of targeting DCLK1 to inhibit locoregional invasion, a life-threatening attribute of HNSCC.

6.
ACS Nano ; 18(18): 11573-11597, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38655635

RESUMO

The growth of two-dimensional (2D) materials through chemical vapor deposition (CVD) has sparked a growing interest among both the industrial and academic communities. The interest stems from several key advantages associated with CVD, including high yield, high quality, and high tunability. In order to harness the application potentials of 2D materials, it is often necessary to transfer them from their growth substrates to their desired target substrates. However, conventional transfer methods introduce contamination that can adversely affect the quality and properties of the transferred 2D materials, thus limiting their overall application performance. This review presents a comprehensive summary of the current clean transfer methods for 2D materials with a specific focus on the understanding of interaction between supporting layers and 2D materials. The review encompasses various aspects, including clean transfer methods, post-transfer cleaning techniques, and cleanliness assessment. Furthermore, it analyzes and compares the advances and limitations of these clean transfer techniques. Finally, the review highlights the primary challenges associated with current clean transfer methods and provides an outlook on future prospects.

7.
Nat Mater ; 23(2): 196-204, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191634

RESUMO

The quest for electronic devices that offer flexibility, wearability, durability and high performance has spotlighted two-dimensional (2D) van der Waals materials as potential next-generation semiconductors. Especially noteworthy is indium selenide, which has demonstrated surprising ultra-high plasticity. To deepen our understanding of this unusual plasticity in 2D van der Waals materials and to explore inorganic plastic semiconductors, we have conducted in-depth experimental and theoretical investigations on metal monochalcogenides (MX) and transition metal dichalcogenides (MX2). We have discovered a general plastic deformation mode in MX, which is facilitated by the synergetic effect of phase transitions, interlayer gliding and micro-cracks. This is in contrast to crystals with strong atomic bonding, such as metals and ceramics, where plasticity is primarily driven by dislocations, twinning or grain boundaries. The enhancement of gliding barriers prevents macroscopic fractures through a pinning effect after changes in stacking order. The discovery of ultra-high plasticity and the phase transition mechanism in 2D MX materials holds significant potential for the design and development of high-performance inorganic plastic semiconductors.

8.
Explor Target Antitumor Ther ; 4(5): 1104-1121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023989

RESUMO

Aim: Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with a survival rate below fifty percent. Addressing meager therapeutic options, a series of small molecule inhibitors were screened for antitumor efficacy. The most potent analog, acryl-3,5-bis(2,4-difluorobenzylidene)-4-piperidone (DiFiD; A-DiFiD), demonstrated strong cellular JUN proto-oncogene, activator protein 1 (AP-1) transcription factor subunit (JUN, c-Jun) antagonism. c-Jun, an oncogenic transcription factor, promotes cancer progression, invasion, and adhesion; high (JUN) mRNA expression correlates with poorer HNSCC survival. Methods: Four new small molecules were generated for cytotoxicity screening in HNSCC cell lines. A-DiFiD-treated HNSCC cells were assessed for cytotoxicity, colony formation, invasion, migration, and adhesion. Dot blot array was used to identify targets. Phospho-c-Jun (p-c-Jun) expression was analyzed using immunoblotting. The Cancer Genome Atlas (TCGA) head and neck cancer datasets were utilized to determine overall patient survival. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) datasets interfaced with University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN) were analyzed to determine protein levels of c-Jun in HNSCC patients and correlate levels with patient. Results: Of the small molecules tested, A-DiFiD was the most potent in HNSCC lines, while demonstrating low half-maximal drug inhibitory concentration (IC50) in non-malignant Het-1A cells. Additionally, A-DiFiD abrogated cell invasion, migration, and colony formation. Phospho-kinase in vitro array demonstrated A-DiFiD reduced p-c-Jun. Likewise, a time dependent reduction in p-c-Jun was observed starting at 3 min post A-DiFiD treatment. TCGA Firehose Legacy vs. recurrent and metastatic head and neck cancer reveal a nearly 3% DNA amplification in recurrent/metastatic tumor compared to below 1% in primary tumors that had no lymph node metastasis. CPTAC analysis show higher tumor c-Jun levels compared to normal. Patients with high JUN expression had significantly reduced 3-year survival. Conclusions: A-DiFiD targets c-Jun, a clinical HNSCC driver, with potent anti-tumor effects.

9.
Nat Commun ; 14(1): 6462, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833368

RESUMO

Surface amorphization provides electrocatalysts with more active sites and flexibility. However, there is still a lack of experimental observations and mechanistic explanations for the in situ amorphization process and its crucial role. Herein, we propose the concept that by in situ reconstructed amorphous surface, metal phosphorus trichalcogenides could intrinsically offer better catalytic performance for the alkaline hydrogen production. Trace Ru (0.81 wt.%) is doped into NiPS3 nanosheets for alkaline hydrogen production. Using in situ electrochemical transmission electron microscopy technique, we confirmed the amorphization process occurred on the edges of NiPS3 is critical for achieving superior activity. Comprehensive characterizations and theoretical calculations reveal Ru primarily stabilized at edges of NiPS3 through in situ formed amorphous layer containing bridging S22- species, which can effectively reduce the reaction energy barrier. This work emphasizes the critical role of in situ formed active layer and suggests its potential for optimizing catalytic activities of electrocatalysts.

10.
Chem Rev ; 123(18): 10990-11046, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37672768

RESUMO

Two-dimensional (2D) ferroics, namely ferroelectric, ferromagnetic, and ferroelastic materials, are attracting rising interest due to their fascinating physical properties and promising functional applications. A variety of 2D ferroic phases, as well as 2D multiferroics and the novel 2D ferrovalleytronics/ferrotoroidics, have been recently predicted by theory, even down to the single atomic layers. Meanwhile, some of them have already been experimentally verified. In addition to the intrinsic 2D ferroics, appropriate stacking, doping, and defects can also artificially regulate the ferroic phases of 2D materials. Correspondingly, ferroic ordering in 2D materials exhibits enormous potential for future high density memory devices, energy conversion devices, and sensing devices, among other applications. In this paper, the recent research progresses on 2D ferroic phases are comprehensively reviewed, with emphasis on chemistry and structural origin of the ferroic properties. In addition, the promising applications of the 2D ferroics for information storage, optoelectronics, and sensing are also briefly discussed. Finally, we envisioned a few possible pathways for the future 2D ferroics research and development. This comprehensive overview on the 2D ferroic phases can provide an atlas for this field and facilitate further exploration of the intriguing new materials and physical phenomena, which will generate tremendous impact on future functional materials and devices.

11.
Adv Mater ; : e2304808, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505096

RESUMO

Emerging non-noble metal 2D catalysts, such as molybdenum disulfide (MoS2 ), hold great promise in hydrogen evolution reactions. The sulfur vacancy is recognized as a key defect type that can activate the inert basal plane to improve the catalytic performance. Unfortunately, the method of introducing sulfur vacancies is limited and requires costly post-treatment processes. Here, a novel salt-assisted chemical vapor deposition (CVD) method is demonstrated for synthesizing ultrahigh-density vacancy-rich 2H-MoS2 , with a controllable sulfur vacancy density of up to 3.35 × 1014  cm-2 . This approach involves a pre-sprayed potassium chloridepromoter on the growth substrate. The generation of such defects is closely related to ion adsorption in the growth process, the unstable MoS2 -K-H2 O triggers the formation of sulfur vacancies during the subsequent transfer process, and it is more controllable and nondestructive when compared to traditional post-treatment methods. The vacancy-rich monolayer MoS2 exhibits exceptional catalytic activity based on the microcell measurements, with an overpotential of ≈158.8 mV (100 mA cm-2 ) and a Tafel slope of 54.3 mV dec-1 in 0.5 m H2 SO4 electrolyte. These results indicate a promising opportunity for modulating sulfur vacancy defects in MoS2 using salt-assisted CVD growth. This approach represents a significant leap toward achieving better control over the catalytic performances of 2D materials.

12.
ACS Appl Mater Interfaces ; 15(21): 25849-25859, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37200621

RESUMO

Atmospheric water harvesting (AWH) is a possible solution for the current water crisis on the Earth, and the key process of AWH has been widely applied in commercial dehumidifiers. To improve the energy efficiency of the AWH process, applying a superhydrophobic surface to trigger coalescence-induced jumping could be a promising technique that has attracted extensive interest. While most previous studies focused on optimizing the geometric parameters such as nanoscale surface roughness (<1 µm) or microscale structures (10 µm to a few hundred µm range), which might enhance AWH, here, we report a simple and low-cost approach for superhydrophobic surface engineering, through alkaline oxidation of copper. The prepared medium-sized microflower structures (3-5 µm) by our method could fill the gap of the conventional nano- and microstructures, simultaneously act as the preferable nucleation sites and the promoter for the condensed droplet mobility including droplet coalescence and departure, and eventually benefit the entire AWH performances. Moreover, our AWH structure has been optimized with the aid of machine learning computer vision techniques for droplet dynamic analysis on a micrometer scale. Overall, the alkaline surface oxidation and medium-scale microstructures could provide excellent opportunities for superhydrophobic surfaces for future AWH.

13.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36980785

RESUMO

Cancer cells rely on the tumor microenvironment (TME), a composite of non-malignant cells, and extracellular matrix (ECM), for survival, growth, and metastasis. The ECM contributes to the biomechanical properties of the surrounding tissue, in addition to providing signals for tissue development. Cancer-associated fibroblasts (CAFs) are stromal cells in the TME that are integral to cancer progression. Subtypes of CAFs across a variety of cancers have been revealed, and each play a different role in cancer progression or suppression. CAFs secrete signaling molecules and remodel the surrounding ECM by depositing its constituents as well as degrading enzymes. In cancer, a remodeled ECM can lead to tumor-promoting effects. Not only does the remodeled ECM promote growth and allow for easier metastasis, but it can also modulate the immune system. A better understanding of how CAFs remodel the ECM will likely yield novel therapeutic targets. In this review, we summarize the key factors secreted by CAFs that facilitate tumor progression, ECM remodeling, and immune suppression.

14.
Nano Lett ; 23(4): 1379-1385, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36763496

RESUMO

Low temperature and high humidity conditions significantly degrade the performance of solid-state lubricants consisting of van der Waals (vdW) atomic layers, owing to the liquid water layer attached/intercalated to the vdW layers, which greatly enhances the interlayer friction. However, using low temperature in situ atomic force microscopy (AFM) and friction force microscopy (FFM), we unveil the unexpected ultralow friction between two-dimensional (2D) ice, a solid phase of water confined to the 2D space, and the 2D molybdenum disulfides (MoS2). The friction of MoS2 and 2D ice is reduced by more than 30% as compared to bare MoS2 and the rigid surface. The phase transition of liquid water into 2D ice under mechanical compression has also been observed. These new findings can be applied as novel frictionless water/ice transport technology in nanofluidic systems and promising high performance lubricants for operating in low temperature and high humidity environments.

15.
Adv Mater ; 35(14): e2210503, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36637097

RESUMO

The scalable 2D device fabrication and integration demand either the large-area synthesis or the post-synthesis transfer of 2D layers. While the direct synthesis of 2D materials on most targeted surfaces remains challenging, the transfer approach from the growth substrate onto the targeted surfaces offers an alternative pathway for applications and integrations. However, the current transfer techniques for 2D materials predominantly involve polymers and organic solvents, which are liable to contaminate or deform the ultrasensitive atomic layers. Here, novel ice-aided transfer and ice-stamp transfer methods are developed, in which water (ice) is the only medium in the entire process. In practice, the adhesion between various 2D materials and ice can be well controlled by temperature. Through such controlled adhesion of ice, it is shown that the new transfer methods can yield ultrahigh quality and exceptional cleanliness in transferred 2D flakes and continuous 2D films, and are applicable for a wide range of substrates. Furthermore, beyond transfer, ice can also be used for cleaning the surfaces of 2D materials at higher temperatures. These novel techniques can enable unprecedented ultraclean 2D materials surfaces and performances, and will contribute to the upcoming technological revolutions associated with 2D materials.

16.
Nat Nanotechnol ; 18(1): 55-63, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36509923

RESUMO

Memory transistors based on two-dimensional (2D) ferroelectric semiconductors are intriguing for next-generation in-memory computing. To date, several 2D ferroelectric materials have been unveiled, among which 2D In2Se3 is the most promising, as all the paraelectric (ß), ferroelectric (α) and antiferroelectric (ß') phases are found in 2D quintuple layers. However, the large-scale synthesis of 2D In2Se3 films with the desired phase is still absent, and the stability for each phase remains obscure. Here we show the successful growth of centimetre-scale 2D ß-In2Se3 film by chemical vapour deposition including distinct centimetre-scale 2D ß'-In2Se3 film by an InSe precursor. We also demonstrate that as-grown 2D ß'-In2Se3 films on mica substrates can be delaminated or transferred onto flexible or uneven substrates, yielding α-In2Se3 films through a complete phase transition. Thus, a full spectrum of paraelectric, ferroelectric and antiferroelectric 2D films can be readily obtained by means of the correlated polymorphism in 2D In2Se3, enabling 2D memory transistors with high electron mobility, and polarizable ß'-α In2Se3 heterophase junctions with improved non-volatile memory performance.

17.
Angew Chem Int Ed Engl ; 62(4): e202216008, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36399056

RESUMO

The direct utilization of metal-organic frameworks (MOFs) for electrocatalytic oxygen evolution reaction (OER) has attracted increasing interests. Herein, we employ the low-dose integrated differential phase contrast-scanning transmission electron microscopy (iDPC-STEM) technique to visualize the atomic structure of multivariate MOFs (MTV-MOFs) for guiding the structural design of bulk MOFs for efficient OER. The iDPC-STEM images revealed that incorporating Fe3+ or 2-aminoterephthalate (ATA) into Ni-BDC (BDC: benzenedicarboxylate) can introduce inhomogeneous lattice strain that weaken the coordination bonds, which can be selectively cleaved via a mild heat treatment to simultaneously generate coordinatively unsaturated metal sites, conductive Ni@C and hierarchical porous structure. Thus, excellent OER activity with current densities of 10 and 100 mA cm-2 are achieved over the defective MOFs at small overpotentials of 286 mV and 365 mV, respectively, which is superior to the commercial RuO2 catalyst and most of the bulk MOFs.

18.
Sci Adv ; 8(42): eabo0773, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269828

RESUMO

Phase transitions in two-dimensional (2D) materials promise reversible modulation of material physical and chemical properties in a wide range of applications. 2D van der Waals layered In2Se3 with bistable out-of-plane ferroelectric (FE) α phase and antiferroelectric (AFE) ß' phase is particularly attractive for its electronic applications. However, reversible phase transition in 2D In2Se3 remains challenging. Here, we introduce two factors, dimension (thickness) and strain, which can effectively modulate the phases of 2D In2Se3. We achieve reversible AFE and out-of-plane FE phase transition in 2D In2Se3 by delicate strain control inside a transmission electron microscope. In addition, the polarizations in 2D FE In2Se3 can also be manipulated in situ at the nanometer-sized contacts, rendering remarkable memristive behavior. Our in situ transmission electron microscopy (TEM) work paves a previously unidentified way for manipulating the correlated FE phases and highlights the great potentials of 2D ferroelectrics for nanoelectromechanical and memory device applications.

19.
BMC Cancer ; 22(1): 627, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35672711

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) constitutes 10-20% of breast cancers and is challenging to treat due to a lack of effective targeted therapies. Previous studies in TNBC cell lines showed in vitro growth inhibition when JQ1 or GSK2801 were administered alone, and enhanced activity when co-administered. Given their respective mechanisms of actions, we hypothesized the combinatorial effect could be due to the target genes affected. Hence the target genes were characterized for their expression in the TNBC cell lines to prove the combinatorial effect of JQ1 and GSK2801. METHODS: RNASeq data sets of TNBC cell lines (MDA-MB-231, HCC-1806 and SUM-159) were analyzed to identify the differentially expressed genes in single and combined treatments. The topmost downregulated genes were characterized for their downregulated expression in the TNBC cell lines treated with JQ1 and GSK2801 under different dose concentrations and combinations. The optimal lethal doses were determined by cytotoxicity assays. The inhibitory activity of the drugs was further characterized by molecular modelling studies. RESULTS: Global expression profiling of TNBC cell lines using RNASeq revealed different expression patterns when JQ1 and GSK2801 were co-administered. Functional enrichment analyses identified several metabolic pathways (i.e., systemic lupus erythematosus, PI3K-Akt, TNF, JAK-STAT, IL-17, MAPK, Rap1 and signaling pathways) enriched with upregulated and downregulated genes when combined JQ1 and GSK2801 treatment was administered. RNASeq identified downregulation of PTPRC, MUC19, RNA5-8S5, KCNB1, RMRP, KISS1 and TAGLN (validated by RT-qPCR) and upregulation of GPR146, SCARA5, HIST2H4A, CDRT4, AQP3, MSH5-SAPCD1, SENP3-EIF4A1, CTAGE4 and RNASEK-C17orf49 when cells received both drugs. In addition to differential gene regulation, molecular modelling predicted binding of JQ1 and GSK2801 with PTPRC, MUC19, KCNB1, TAGLN and KISS1 proteins, adding another mechanism by which JQ1 and GSK2801 could elicit changes in metabolism and proliferation. CONCLUSION: JQ1-GSK2801 synergistically inhibits proliferation and results in selective gene regulation. Besides suggesting that combinatorial use could be useful therapeutics for the treatment of TNBC, the findings provide a glimpse into potential mechanisms of action for this combination therapy approach.


Assuntos
Azepinas/farmacologia , Carcinoma Hepatocelular , Neoplasias Hepáticas , Triazóis/farmacologia , Neoplasias de Mama Triplo Negativas , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Indolizinas , Kisspeptinas/genética , Neoplasias Hepáticas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Depuradores Classe A/genética , Sulfonas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
20.
Adv Sci (Weinh) ; 9(23): e2200702, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35723437

RESUMO

Phase patterning in polymorphic two-dimensional (2D) materials offers diverse properties that extend beyond what their pristine structures can achieve. If precisely controllable, phase transitions can bring exciting new applications for nanometer-scale devices and ultra-large-scale integrations. Here, the focused electron beam is capable of triggering the phase transition from the semiconducting T'' phase to metallic T' and T phases in 2D rhenium disulfide (ReS2 ) and rhenium diselenide (ReSe2 ) monolayers, rendering ultra-precise phase patterning technique even in sub-nanometer scale is found. Based on knock-on effects and strain analysis, the phase transition mechanism on the created atomic vacancies and the introduced substantial in-plane compressive strain in 2D layers are clarified. This in situ high-resolution scanning transmission electron microscopy (STEM) and in situ electrical characterizations agree well with the density functional theory (DFT) calculation results for the atomic structures, electronic properties, and phase transition mechanisms. Grain boundary engineering and electrical contact engineering in 2D are thus developed based on this patterning technique. The patterning method exhibits great potential in ultra-precise electron beam lithography as a scalable top-down manufacturing method for future atomic-scale devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...