Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 288(41): 29692-702, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24005668

RESUMO

Nitrogen is an essential nutrient for growth and is readily available to microbes in many environments in the form of ammonium and nitrate. Both ions are of environmental significance due to sustained use of inorganic fertilizers on agricultural soils. Diverse species of bacteria that have an assimilatory nitrate/nitrite reductase system (NAS) can use nitrate or nitrite as the sole nitrogen source for growth when ammonium is limited. In Paracoccus denitrificans, the pathway-specific two-component regulator for NAS expression is encoded by the nasT and nasS genes. Here, we show that the putative RNA-binding protein NasT is a positive regulator essential for expression of the nas gene cluster (i.e. nasABGHC). By contrast, a nitrogen oxyanion-binding sensor (NasS) is required for nitrate/nitrite-responsive control of nas gene expression. The NasS and NasT proteins co-purify as a stable heterotetrameric regulatory complex, NasS-NasT. This protein-protein interaction is sensitive to nitrate and nitrite, which cause dissociation of the NasS-NasT complex into monomeric NasS and an oligomeric form of NasT. NasT has been shown to bind the leader RNA for nasA. Thus, upon liberation from the complex, the positive regulator NasT is free to up-regulate nas gene expression.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Ânions/química , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Eletroforese em Gel de Poliacrilamida , Regulação Bacteriana da Expressão Gênica , Cinética , Família Multigênica , Mutação , Nitrito Redutase (NAD(P)H)/química , Nitrito Redutase (NAD(P)H)/genética , Nitrito Redutase (NAD(P)H)/metabolismo , Nitritos/metabolismo , Nitrogênio/química , Oxigênio/química , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Ligação Proteica , Multimerização Proteica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Transdução de Sinais/genética , Espectrometria de Fluorescência
2.
Arch Microbiol ; 190(6): 685-96, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18716757

RESUMO

Escherichia coli can perform two modes of formate metabolism. Under respiratory conditions, two periplasmically-located formate dehydrogenase isoenzymes couple formate oxidation to the generation of a transmembrane electrochemical gradient; and under fermentative conditions a third cytoplasmic isoenzyme is involved in the disproportionation of formate to CO(2) and H(2). The respiratory formate dehydrogenases are redox enzymes that comprise three subunits: a molybdenum cofactor- and FeS cluster-containing catalytic subunit; an electron-transferring ferredoxin; and a membrane-integral cytochrome b. The catalytic subunit and its ferredoxin partner are targeted to the periplasm as a complex by the twin-arginine transport (Tat) pathway. Biosynthesis of these enzymes is under control of an accessory protein termed FdhE. In this study, it is shown that E. coli FdhE interacts with the catalytic subunits of the respiratory formate dehydrogenases. Purification of recombinant FdhE demonstrates the protein is an iron-binding rubredoxin that can adopt monomeric and homodimeric forms. Bacterial two-hybrid analysis suggests the homodimer form of FdhE is stabilized by anaerobiosis. Site-directed mutagenesis shows that conserved cysteine motifs are essential for the physiological activity of the FdhE protein and are also involved in iron ligation.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Formiato Desidrogenases/biossíntese , Domínio Catalítico , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Formiato Desidrogenases/química , Proteínas de Ligação ao Ferro/biossíntese , Proteínas de Ligação ao Ferro/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
3.
Theor Appl Genet ; 115(8): 1127-36, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17874062

RESUMO

The interaction between tomato and the leaf mould pathogen Cladosporium fulvum is an excellent model to study gene-for-gene interactions and plant disease resistance gene evolution. Most Cf genes were introgressed into cultivated tomato (Solanum lycopersicum) from wild relatives such as S. pimpinellifolium and novel Cf-ECP genes were recently identified in this species. Our objective is to isolate Cf-ECP1, Cf-ECP2, Cf-ECP4 and Cf-ECP5 to increase our understanding of Cf gene evolution, and the molecular basis for recognition specificity in Cf proteins. The map locations of Cf-ECP2 and Cf-ECP5 have been reported previously and we report here that Cf-ECP1 and Cf-ECP4 map to a different locus on the short arm of chromosome 1. The analysis of selected recombinants and allelism tests showed both genes are located at Milky Way together with Cf-9 and Cf-4. Our results emphasise the importance of this locus in generating novel Cf genes for resistance to C. fulvum. Candidate genes for Cf-ECP1 and Cf-ECP4 were also identified by DNA gel blot analysis of bulked segregant pools. In addition, we generated functional cassettes for expression of the C. fulvum ECP1, ECP2, ECP4 and ECP5 proteins using recombinant Potato Virus X, and three ECPs were also expressed in stable transformed plants. Using marker-assisted selection we have also identified recombinants containing Cf-ECP1, Cf-ECP2, Cf-ECP4 or Cf-ECP5 in cis with a linked T-DNA carrying the non-autonomous Zea mays transposon Dissociation. Using these resources it should now be possible to isolate all four Cf-ECPs using transposon tagging, or a candidate gene strategy.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Doenças das Plantas/microbiologia , Solanum/genética , Solanum/microbiologia , Sequência de Aminoácidos , Sequência de Bases , Cladosporium/genética , Cladosporium/metabolismo , Cladosporium/patogenicidade , Espaço Extracelular/genética , Espaço Extracelular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Marcadores Genéticos , Vetores Genéticos , Dados de Sequência Molecular , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Potexvirus , Solanum/metabolismo
4.
Proc Natl Acad Sci U S A ; 104(40): 15641-6, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17901208

RESUMO

The twin-arginine transport (Tat) system is dedicated to the translocation of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat system by signal peptides containing a twin-arginine motif. In Escherichia coli, many Tat substrates bind redox-active cofactors in the cytoplasm before transport. Coordination of cofactor insertion with protein export involves a "Tat proofreading" process in which chaperones bind twin-arginine signal peptides, thus preventing premature export. The initial Tat signal-binding proteins described belonged to the TorD family, which are required for assembly of N- and S-oxide reductases. Here, we report that E. coli NapD is a Tat signal peptide-binding chaperone involved in biosynthesis of the Tat-dependent nitrate reductase NapA. NapD binds tightly and specifically to the NapA twin-arginine signal peptide and suppresses signal peptide translocation activity such that transport via the Tat pathway is retarded. High-resolution, heteronuclear, multidimensional NMR spectroscopy reveals the 3D solution structure of NapD. The chaperone adopts a ferredoxin-type fold, which is completely distinct from the TorD family. Thus, NapD represents a new family of twin-arginine signal-peptide-binding proteins.


Assuntos
Arginina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Variação Genética , Proteínas de Membrana Transportadoras/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Sítios de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Nitrato Redutase/metabolismo , Oxirredução , Ligação Proteica , Transdução de Sinais , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...