Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792190

RESUMO

As a conformationally restricted amino acid, hydroxy-l-proline is a versatile scaffold for the synthesis of diverse multi-functionalized pyrrolidines for probing the ligand binding sites of biological targets. With the goal to develop new inhibitors of the widely expressed amino acid transporters SLC1A4 and SLC1A5 (also known as ASCT1 and ASCT2), we synthesized and functionally screened synthetic hydroxy-l-proline derivatives using electrophysiological and radiolabeled uptake methods against amino acid transporters from the SLC1, SLC7, and SLC38 solute carrier families. We have discovered a novel class of alkoxy hydroxy-pyrrolidine carboxylic acids (AHPCs) that act as selective high-affinity inhibitors of the SLC1 family neutral amino acid transporters SLC1A4 and SLC1A5. AHPCs were computationally docked into a homology model and assessed with respect to predicted molecular orientation and functional activity. The series of hydroxyproline analogs identified here represent promising new agents to pharmacologically modulate SLC1A4 and SLC1A5 amino acid exchangers which are implicated in numerous pathophysiological processes such as cancer and neurological diseases.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/química , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/química , Humanos , Prolina/química , Prolina/análogos & derivados , Animais , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Células HEK293 , Pirrolidinas/química , Pirrolidinas/farmacologia , Pirrolidinas/síntese química , Descoberta de Drogas , Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética
2.
Nat Commun ; 9(1): 1372, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636462

RESUMO

Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, 19F NMR is used to delineate the effects of cations on functional states of the adenosine A2A GPCR. While Na+ reinforces an inactive ensemble and a partial-agonist stabilized state, Ca2+ and Mg2+ shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridge specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. An understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu.


Assuntos
Adenosina-5'-(N-etilcarboxamida)/química , Adenosina/química , Cálcio/química , Magnésio/química , Receptor A2A de Adenosina/química , Triazinas/química , Triazóis/química , Adenosina/metabolismo , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cálcio/metabolismo , Cátions Bivalentes , Cristalografia por Raios X , Expressão Gênica , Humanos , Cinética , Magnésio/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Termodinâmica , Triazinas/metabolismo , Triazóis/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(10): E2419-E2428, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29453275

RESUMO

Subtype-selective antagonists for muscarinic acetylcholine receptors (mAChRs) have long been elusive, owing to the highly conserved orthosteric binding site. However, allosteric sites of these receptors are less conserved, motivating the search for allosteric ligands that modulate agonists or antagonists to confer subtype selectivity. Accordingly, a 4.6 million-molecule library was docked against the structure of the prototypical M2 mAChR, seeking molecules that specifically stabilized antagonist binding. This led us to identify a positive allosteric modulator (PAM) that potentiated the antagonist N-methyl scopolamine (NMS). Structure-based optimization led to compound '628, which enhanced binding of NMS, and the drug scopolamine itself, with a cooperativity factor (α) of 5.5 and a KB of 1.1 µM, while sparing the endogenous agonist acetylcholine. NMR spectral changes determined for methionine residues reflected changes in the allosteric network. Moreover, '628 slowed the dissociation rate of NMS from the M2 mAChR by 50-fold, an effect not observed at the other four mAChR subtypes. The specific PAM effect of '628 on NMS antagonism was conserved in functional assays, including agonist stimulation of [35S]GTPγS binding and ERK 1/2 phosphorylation. Importantly, the selective allostery between '628 and NMS was retained in membranes from adult rat hypothalamus and in neonatal rat cardiomyocytes, supporting the physiological relevance of this PAM/antagonist approach. This study supports the feasibility of discovering PAMs that confer subtype selectivity to antagonists; molecules like '628 can convert an armamentarium of potent but nonselective GPCR antagonist drugs into subtype-selective reagents, thus reducing their off-target effects.


Assuntos
Agonistas Muscarínicos/química , Receptor Muscarínico M2/química , Regulação Alostérica , Sítio Alostérico , Animais , Humanos , Cinética , Ligantes , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Agonistas Muscarínicos/metabolismo , Fosforilação , Ligação Proteica , Ratos , Receptor Muscarínico M2/metabolismo
4.
J Am Chem Soc ; 139(10): 3607-3610, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28263576

RESUMO

Cell transmembrane receptors play a key role in the detection of environmental stimuli and control of intracellular communication. G protein-coupled receptors constitute the largest transmembrane protein family involved in cell signaling. However, current methods for their functional reconstitution in biomimetic membranes remain both challenging and limited in scope. Herein, we describe the spontaneous reconstitution of adenosine A2A receptor (A2AR) during the de novo formation of synthetic liposomes via native chemical ligation. The approach takes advantage of a nonenzymatic and chemoselective method to rapidly generate A2AR embedded phospholiposomes from receptor solubilized in n-dodecyl-ß-d-maltoside analogs. In situ lipid synthesis for protein reconstitution technology proceeds in the absence of dialysis and/or detergent absorbents, and A2AR assimilation into synthetic liposomes can be visualized by microscopy and probed by radio-ligand binding.


Assuntos
Lipossomos/metabolismo , Receptor A2A de Adenosina/metabolismo , Humanos , Lipossomos/síntese química , Lipossomos/química , Modelos Moleculares , Estrutura Molecular , Receptor A2A de Adenosina/química
5.
Arthritis Rheumatol ; 66(3): 579-88, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24574218

RESUMO

OBJECTIVE: The nuclear receptor retinoic acid receptor-related orphan nuclear receptor γ (RORγ; T cell-specific isoform RORγt) is a key regulator of Th17 cell differentiation, controlling the production of the inflammatory cytokine interleukin-17 (IL-17). Lipopolysaccharide (LPS) stimulation of monocytes leads to the induction of RORγ. We previously showed that the potent and selective inverse agonist of RORγ, SR2211, was effective at suppressing IL-17 production in EL4 cells. The aim of this study was to examine the effects of SR2211 treatment on proinflammatory cytokine expression in LPS-stimulated RAW 264.7 cells as well as on joint inflammation in vivo in mice with collagen-induced arthritis (CIA). METHODS: Collagen was injected into the tail of DBA mice, followed by a booster inoculation 21 days later. Three days prior to the booster inoculation, SR2211 was administered twice daily for 15 days. Thymus, spleen, and draining lymph nodes (DLNs) were then harvested, and Th17 cell differentiation and DLN stimulation were performed. RESULTS: Treatment of Th17 cells with SR2211 suppressed the expression and production of inflammatory cytokines. Likewise, SR2211 reduced inflammatory cytokine production in LPS-stimulated RAW 264.7 cells. Mice with CIA that received SR2211 twice daily for 15 days exhibited a statistically significant reduction in joint inflammation as compared to mice that received only vehicle. Interestingly, systemic Th1 cell activation was detected in SR2211-treated mice with CIA, as indicated by an increase in interferon-γ levels. CONCLUSION: The findings of this study support the idea of targeting RORγ to therapeutically repress inflammatory T cell function and macrophage activation in humans with rheumatoid arthritis. Compounds such as SR2211 have potential utility for the treatment of inflammatory disease.


Assuntos
Artrite Experimental/tratamento farmacológico , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Piperazinas/uso terapêutico , Propanóis/uso terapêutico , Células Th17/efeitos dos fármacos , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Linhagem Celular , Citocinas/metabolismo , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Piperazinas/farmacologia , Propanóis/farmacologia , Células Th17/imunologia , Células Th17/metabolismo
6.
ACS Chem Biol ; 7(4): 672-7, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22292739

RESUMO

Nuclear receptors (NRs) are ligand-regulated transcription factors that display canonical domain structure with highly conserved DNA-binding and ligand-binding domains. The identification of the endogenous ligands for several receptors remains elusive or is controversial, and thus these receptors are classified as orphans. One such orphan receptor is the retinoic acid receptor-related orphan receptor γ (RORγ). An isoform of RORγ, RORγt, has been shown to be essential for the expression of Interleukin 17 (IL-17) and the differentiation of Th17 cells. Th17 cells have been implicated in the pathology of several autoimmune diseases, including multiple sclerosis (MS) and rheumatoid arthritis (RA). Genetic ablation of RORγ alone or in combination with RORα in mice led to impaired Th17 differentiation and protected the mice from development of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Here we describe SR2211, a selective RORγ modulator that potently inhibits production of IL-17 in cells.


Assuntos
Piperazinas/química , Propanóis/química , Receptores do Ácido Retinoico/antagonistas & inibidores , Animais , Doenças Autoimunes , Interleucina-17/biossíntese , Ligantes , Camundongos , Células Th17 , Receptor gama de Ácido Retinoico
7.
Proc Natl Acad Sci U S A ; 108(36): 14980-5, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21873219

RESUMO

A prominent aqueous cavity is formed by the junction of three identical subunits in the excitatory amino acid transporter (EAAT) family. To investigate the effect of this structure on the interaction of ligands with the transporter, we recorded currents in voltage-clamped Xenopus oocytes expressing EAATs and used concentration jumps to measure binding and unbinding rates of a high-affinity aspartate analog that competitively blocks transport (ß-2-fluorenyl-aspartylamide; 2-FAA). The binding rates of the blocker were approximately one order of magnitude slower than l-Glu and were not significantly different for EAAT1, EAAT2, or EAAT3, but 2-FAA exhibited higher affinity for the neuronal transporter EAAT3 as a result of a slower dissociation rate. Unexpectedly, the rate of recovery from block was increased by l-Glu in a saturable and concentration-dependent manner, ruling out a first-order mechanism and suggesting that following unbinding, there is a significant probability of ligand rebinding to the same or neighboring subunits within a trimer. Consistent with such a mechanism, coexpression of wild-type subunits with mutant (R447C) subunits that do not bind glutamate or 2-FAA also increased the unblocking rate. The data suggest that electrostatic and steric factors result in an effective dissociation rate that is approximately sevenfold slower than the microscopic subunit unbinding rate. The quaternary structure, which has been conserved through evolution, is expected to increase the transporters' capture efficiency by increasing the probability that following unbinding, a ligand will rebind as opposed to being lost to diffusion.


Assuntos
Ácido Aspártico/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Sítios de Ligação/fisiologia , Transporte Biológico/fisiologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/antagonistas & inibidores , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Humanos , Ligantes , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...