Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 79: 103492, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39013239

RESUMO

Usher syndrome (USH) is the most common cause of inherited deaf-blindness. Here, we produced the LEIi020-A and LEIi020-B induced pluripotent stem cell (iPSC) lines from dermal fibroblasts derived from a patient with USH1B caused by inheritance of homozygous c.496del variants in MYO7A using episomal plasmids encoding OCT4, SOX2, KLF4, L-MYC, LIN28, mir302/367 microRNA and shRNA for TP53. Both iPSC lines expressed pluripotency markers, demonstrated trilineage differentiation potential and displayed a 46,XY karyotype. These cell lines represent a valuable resource for the production of retinal and otic tissues to support research into the pathogenesis and treatment of USH1B.

2.
Biomedicines ; 11(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38137568

RESUMO

Up to 1.5 billion people worldwide suffer from various forms of hearing loss, with an additional 1.1 billion people at risk from various insults such as increased consumption of recreational noise-emitting devices and ageing. The most common type of hearing impairment is sensorineural hearing loss caused by the degeneration or malfunction of cochlear hair cells or spiral ganglion nerves in the inner ear. There is currently no cure for hearing loss. However, emerging frontier technologies such as gene, drug or cell-based therapies offer hope for an effective cure. In this review, we discuss the current therapeutic progress for the treatment of hearing loss. We describe and evaluate the major therapeutic approaches being applied to hearing loss and summarize the key trials and studies.

3.
Front Pharmacol ; 14: 1207141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927600

RESUMO

Despite significant advances in the development of therapeutics for hearing loss, drug delivery to the middle and inner ear remains a challenge. As conventional oral or intravascular administration are ineffective due to poor bioavailability and impermeability of the blood-labyrinth-barrier, localized delivery is becoming a preferable approach for certain drugs. Even then, localized delivery to the ear precludes continual drug delivery due to the invasive and potentially traumatic procedures required to access the middle and inner ear. To address this, the preclinical development of controlled release therapeutics and drug delivery devices have greatly advanced, with some now showing promise clinically. This review will discuss the existing challenges in drug development for treating the most prevalent and damaging hearing disorders, in particular otitis media, perforation of the tympanic membrane, cholesteatoma and sensorineural hearing loss. We will then address novel developments in drug delivery that address these including novel controlled release therapeutics such as hydrogel and nanotechnology and finally, novel device delivery approaches such as microfluidic systems and cochlear prosthesis-mediated delivery. The aim of this review is to investigate how drugs can reach the middle and inner ear more efficiently and how recent innovations could be applied in aiding drug delivery in certain pathologic contexts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...