Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 612(7938): 51-55, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450904

RESUMO

The holographic principle, theorized to be a property of quantum gravity, postulates that the description of a volume of space can be encoded on a lower-dimensional boundary. The anti-de Sitter (AdS)/conformal field theory correspondence or duality1 is the principal example of holography. The Sachdev-Ye-Kitaev (SYK) model of N ≫ 1 Majorana fermions2,3 has features suggesting the existence of a gravitational dual in AdS2, and is a new realization of holography4-6. We invoke the holographic correspondence of the SYK many-body system and gravity to probe the conjectured ER=EPR relation between entanglement and spacetime geometry7,8 through the traversable wormhole mechanism as implemented in the SYK model9,10. A qubit can be used to probe the SYK traversable wormhole dynamics through the corresponding teleportation protocol9. This can be realized as a quantum circuit, equivalent to the gravitational picture in the semiclassical limit of an infinite number of qubits9. Here we use learning techniques to construct a sparsified SYK model that we experimentally realize with 164 two-qubit gates on a nine-qubit circuit and observe the corresponding traversable wormhole dynamics. Despite its approximate nature, the sparsified SYK model preserves key properties of the traversable wormhole physics: perfect size winding11-13, coupling on either side of the wormhole that is consistent with a negative energy shockwave14, a Shapiro time delay15, causal time-order of signals emerging from the wormhole, and scrambling and thermalization dynamics16,17. Our experiment was run on the Google Sycamore processor. By interrogating a two-dimensional gravity dual system, our work represents a step towards a program for studying quantum gravity in the laboratory. Future developments will require improved hardware scalability and performance as well as theoretical developments including higher-dimensional quantum gravity duals18 and other SYK-like models19.

2.
Sci Am ; 310(5): 34-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24783589
3.
Phys Rev Lett ; 111(4): 041801, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23931355

RESUMO

The latest results from the ATLAS and CMS experiments at the CERN Large Hadron Collider unequivocally confirm the existence of a resonance X with mass near 125 GeV which could be the Higgs boson of the standard model. Measuring the properties (quantum numbers and couplings) of this resonance is of paramount importance. Initial analyses by the LHC Collaborations disfavor specific alternative benchmark hypotheses, e.g., pure pseudoscalars or gravitons. However, this is just the first step in a long-term program of detailed measurements. We consider the most general set of operators in the decay channels X→ZZ, WW, Zγ, γγ, and derive the constraint implied by the measured rate. This allows us to provide a useful parametrization of the orthogonal independent Higgs coupling degrees of freedom as coordinates on a suitably defined sphere.

4.
Phys Rev Lett ; 103(26): 261803, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20366305

RESUMO

A dilaton could be the dominant messenger between standard model fields and dark matter. The measured dark matter relic abundance relates the dark matter mass and spin to the conformal breaking scale. The dark matter-nucleon spin-independent cross section is predicted in terms of the dilaton mass. We compute the current constraints on the dilaton from LEP and Tevatron experiments, and the gamma-ray signal from dark matter annihilation to dilatons that could be observed by Fermi Large Area Telescope.

5.
Phys Rev Lett ; 95(26): 261601, 2005 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-16486337

RESUMO

In the same sense that 5D anti-de Sitter space (AdS(5)) warped geometries arise naturally from type IIB string theory with stacks of D3 branes, AdS(7) warped geometries arise naturally from M theory with stacks of M5 branes. We compactify two spatial dimensions of AdS(7) to get AdS(5) x Sigma(2), where the metric for Sigma(2) inherits the same warp factor as appears in the AdS(5). We analyze the 5D spectrum in detail for the case of a bulk scalar or a graviton in AdS(5) x T(2), in a setup which mimics the first Randall-Sundrum model. The results display novel features which might be observed in experiments at the CERN Large Hadron Collider. For example, we obtain TeV scale string winding states without lowering the string scale. This is due to the double warping which is a generic feature of winding states along compactified AdS directions. Experimental verification of these signatures of AdS(7) could be interpreted as direct evidence for M theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...