Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38793463

RESUMO

The developments in manufacturing technologies are expected to reduce energy input without compromising product quality. Regarding the material densification process, numerical simulation methods are applied to achieve this goal. In this case, relevant material models are built using functions that describe the variation in mechanical parameters of the material in question due to its deformation. The literature review conducted for this research has revealed a shortage of experimental research methods allowing a determination of the coefficient of friction at low temperatures, approximately 200 K. This article proposes a method for determining the friction coefficient of dry ice sliding against steel. The experimental results were analysed to obtain several functions describing the variation in the coefficient of friction. These functions were then compared using goodness-of-fit indexes. Finally, two functions with similar goodness-of-fit values were chosen. The findings of this research project will complement the already available information and may be used in various research and implementation projects related to the development or improvement of currently used crystallised carbon dioxide conversion processes.

2.
Materials (Basel) ; 16(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374466

RESUMO

The management of waste materials, particularly non-biodegradable substances such as plastics and composites, is an increasingly pressing issue. Energy efficiency in industrial processes is crucial throughout their life cycle, including the handling of materials such as carbon dioxide (CO2), which has a significant environmental impact. This study focuses on the conversion of solid CO2 into pellets using ram extrusion, a widely used technique. The length of the die land (DL) in this process plays a critical role in determining the maximum extrusion force and the density of dry ice pellets. However, the influence of DL length on the characteristics of dry ice snow, known as compressed carbon dioxide (CCD), remains understudied. To address this research gap, the authors conducted experimental trials using a customized ram extrusion setup, varying the DL length while keeping the other parameters constant. The results demonstrate a substantial correlation between DL length and both the maximum extrusion force and dry ice pellets density. Increasing the DL length leads to a decreased extrusion force and optimized pellet density. These findings provide valuable insights for optimizing the ram extrusion process of dry ice pellets and improving waste management, energy efficiency, and product quality in industries utilizing this technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...