Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 93(4)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369331

RESUMO

The potential for modern coalfield methanogenesis was assessed using formation water from the Illinois Basin, Powder River Basin and Cook Inlet gas field as inocula for nutrient-replete incubations amended with C1-C5 fatty acids as presumed intermediates formed during anaerobic coal biodegradation. Instead of the expected rapid mineralization of these substrates, methanogenesis was inordinately slow (∼1 µmol day-1), following long lag periods (>100 days), and methane yields typically did not reach stoichiometrically expected levels. However, a gene microarray confirmed the potential for a wide variety of microbiological functions, including methanogenesis, at all sites. The Cook Inlet incubations produced methane at a relatively rapid rate when amended with butyrate (r = 0.98; p = 0.001) or valerate (r = 0.84; p = 0.04), a result that significantly correlated with the number of positive mcr gene sequence probes from the functional gene microarray and was consistent with the in situ detection of C4-C5 alkanoic acids. This finding highlighted the role of syntrophy for the biodegradation of the softer lignite and subbituminous coal in this formation, but methanogenesis from the harder subbituminous and bituminous coals in the other fields was less apparent. We conclude that coal methanogenesis is probably not limited by the inherent lack of metabolic potential, the presence of alternate electron acceptors or the lack of available nutrients, but more likely restricted by the inherent recalcitrance of the coal itself.


Assuntos
Biodegradação Ambiental , Carvão Mineral/microbiologia , Euryarchaeota/metabolismo , Ácidos Graxos Voláteis/metabolismo , Metano/metabolismo , Microbiota/fisiologia , Microbiota/genética , Campos de Petróleo e Gás
2.
Front Microbiol ; 7: 534, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148222

RESUMO

Landfills are the final repository for most of the discarded material from human society and its "built environments." Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of "landfill microbiomes" and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

3.
Front Microbiol ; 5: 114, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24744752

RESUMO

The microbial metabolism of hydrocarbons is increasingly associated with the corrosion of carbon steel in sulfate-rich marine waters. However, how such transformations influence metal biocorrosion in the absence of an electron acceptor is not fully recognized. We grew a marine alkane-utilizing, sulfate-reducing bacterium, Desulfoglaeba alkanexedens, with either sulfate or Methanospirillum hungatei as electron acceptors, and tested the ability of the cultures to catalyze metal corrosion. Axenically, D. alkanexedens had a higher instantaneous corrosion rate and produced more pits in carbon steel coupons than when the same organism was grown in syntrophic co-culture with the methanogen. Since anaerobic hydrocarbon biodegradation pathways converge on fatty acid intermediates, the corrosive ability of a known fatty acid-oxidizing syntrophic bacterium, Syntrophus aciditrophicus was compared when grown in pure culture or in co-culture with a H2-utilizing sulfate-reducing bacterium (Desulfovibrio sp., strain G11) or a methanogen (M. hungatei). The instantaneous corrosion rates in the cultures were not substantially different, but the syntrophic, sulfate-reducing co-culture produced more pits in coupons than other combinations of microorganisms. Lactate-grown cultures of strain G11 had higher instantaneous corrosion rates and coupon pitting compared to the same organism cultured with hydrogen as an electron donor. Thus, if sulfate is available as an electron acceptor, the same microbial assemblages produce sulfide and low molecular weight organic acids that exacerbated biocorrosion. Despite these trends, a surprisingly high degree of variation was encountered with the corrosion assessments. Differences in biomass, initial substrate concentration, rates of microbial activity or the degree of end product formation did not account for the variations. We are forced to ascribe such differences to the metallurgical properties of the coupons.

4.
Environ Sci Technol ; 47(11): 6052-62, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23614475

RESUMO

Ultralow sulfur diesel (ULSD) fuel has been integrated into the worldwide fuel infrastructure to help meet a variety of environmental regulations. However, desulfurization alters the properties of diesel fuel in ways that could potentially impact its biological stability. Fuel desulfurization might predispose ULSD to biodeterioration relative to sulfur-rich fuels and in marine systems accelerate rates of sulfate reduction, sulfide production, and carbon steel biocorrosion. To test such prospects, an inoculum from a seawater-compensated ballast tank was amended with fuel from the same ship or with refinery fractions of ULSD, low- (LSD), and high sulfur diesel (HSD) and monitored for sulfate depletion. The rates of sulfate removal in incubations amended with the refinery fuels were elevated relative to the fuel-unamended controls but statistically indistinguishable (∼50 µM SO4/day), but they were found to be roughly twice as fast (∼100 µM SO4/day) when the ship's own diesel was used as a source of carbon and energy. Thus, anaerobic hydrocarbon metabolism likely occurred in these incubations regardless of fuel sulfur content. Microbial community structure from each incubation was also largely independent of the fuel amendment type, based on molecular analysis of 16S rRNA sequences. Two other inocula known to catalyze anaerobic hydrocarbon metabolism showed no differences in fuel-associated sulfate reduction or methanogenesis rates between ULSD, LSD, and HSD. These findings suggest that the stability of diesel is independent of the fuel organosulfur compound status and reasons for the accelerated biocorrosion associated with the use of ULSD should be sought elsewhere.


Assuntos
Gasolina/análise , Consórcios Microbianos/genética , Água do Mar/microbiologia , Aço , Enxofre/análise , Anaerobiose , Biodegradação Ambiental , Corrosão , Hidrocarbonetos/metabolismo , Dados de Sequência Molecular , RNA Ribossômico 16S , Água do Mar/química , Navios , Sulfatos/química , Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...