Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 78(9): 3939-3946, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35124892

RESUMO

BACKGROUND: Generalist predators that kill and eat other natural enemies can weaken biological control. However, pest suppression can be disrupted even if actual intraguild predation is infrequent, if predators reduce their foraging to lower their risk of being killed. In turn, predator-predator interference might be frequent when few other prey are available, but less common when herbivorous and detritus-feeding prey are plentiful. We used molecular gut-content analysis to track consumption of the predatory bug Geocoris sp. by the larger intraguild predator Nabis sp., in organic and conventional potato (Solanum tuberosum) fields. RESULTS: We found that higher densities of both aphids and thrips, two common herbivores, correlated with higher probability of detecting intraguild predation. Perhaps, Nabis foraging for these herbivores also encountered and ate more Geocoris. Surprisingly, likelihood of intraguild predation was not strongly linked to densities of either Nabis or Geocoris, or farming system, suggesting a greater importance for prey than predator community structure. Intriguingly, we found evidence that Geocoris fed more often on the detritus-feeding fly Scaptomyza pallida with increasing predator evenness. This would be consistent with Geocoris shifting to greater foraging on the ground, where S. pallida would be relatively abundant, in the face of greater risk of intraguild predation. CONCLUSION: Overall, our findings suggest that while herbivorous prey may heighten intraguild predation of Geocoris in the foliage, detritivores might support a shift to safer foraging on the ground. This provides further evidence that prey abundance and diversity can act to either heighten or relax predator-predator interference, depending on prey species identity and predator behavior. © 2022 Society of Chemical Industry.


Assuntos
Afídeos , Heterópteros , Animais , Cadeia Alimentar , Herbivoria , Comportamento Predatório
2.
Pest Manag Sci ; 78(9): 3769-3777, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34250727

RESUMO

BACKGROUND: Biological control by generalist predators can be mediated by the abundance and biodiversity of alternative prey. When alternative prey draw predator attacks away from the control target, they can weaken pest suppression. In other cases, a diverse prey base can promote predator abundance and biodiversity, reduce predator-predator interference, and benefit biocontrol. Here, we used molecular gut-content analysis to assess how community composition altered predation of Colorado potato beetle (Leptinotarsa decemlineata (Say)) by Nabis sp. and Geocoris sp. Predators were collected from organic or conventional potato (Solanum tuberosum L.) fields, encouraging differences in arthropod community composition. RESULTS: In organic fields, Nabis predation of potato beetles decreased with increasing arthropod richness and predator abundance. This is consistent with Nabis predators switching to other prey species when available and with growing predator-predator interference. In conventional fields these patterns were reversed, however, with potato beetle predation by Nabis increasing with greater arthropod richness and predator abundance. For Geocoris, Colorado potato beetle predation was more frequent in organic than in conventional fields. However, Geocoris predation of beetles was less frequent in fields with higher abundance of the detritus-feeding fly Scaptomyza pallida Zetterstedt, or of all arthropods, consistent with predators choosing other prey when available. CONCLUSION: Alternative prey generally dampened predation of potato beetles, suggesting these pests were less-preferred prey. Nabis and Geocoris differed in which alternative prey were most disruptive to feeding on potato beetles, and in the effects of farm management on predation, consistent with the two predator species occupying complementary feeding niches. © 2021 Society of Chemical Industry.


Assuntos
Artrópodes , Besouros , Heterópteros , Solanum tuberosum , Agricultura , Animais , Fazendas , Cadeia Alimentar , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...