Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 58(48): 17328-17334, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31591809

RESUMO

With their potential to offer new properties, single crystals containing nanoparticles provide an attractive class of nanocomposite materials. However, to fully profit from these, it is essential that we can characterise their 3D structures, identifying the locations of individual nanoparticles, and the defects present within the host crystals. Using calcite crystals containing quantum dots as a model system, we here use 3D stochastic optical reconstruction microscopy (STORM) to locate the positions of the nanoparticles within the host crystal. The nanoparticles are shown to preferentially associate with dislocations in a manner previously recognised for atomic impurities, rendering these defects visible by STORM. Our images also demonstrate that the types of dislocations formed at the crystal/substrate interface vary according to the nucleation face, and dislocation loops are observed that have entirely different geometries to classic misfit dislocations. This approach offers a rapid, easily accessed, and non-destructive method for visualising the dislocations present within crystals, and gives insight into the mechanisms by which additives become occluded within crystals.

2.
Nat Commun ; 7: 13524, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27857076

RESUMO

From biomineralization to synthesis, organic additives provide an effective means of controlling crystallization processes. There is growing evidence that these additives are often occluded within the crystal lattice. This promises an elegant means of creating nanocomposites and tuning physical properties. Here we use the incorporation of sulfonated fluorescent dyes to gain new understanding of additive occlusion in calcite (CaCO3), and to link morphological changes to occlusion mechanisms. We demonstrate that these additives are incorporated within specific zones, as defined by the growth conditions, and show how occlusion can govern changes in crystal shape. Fluorescence spectroscopy and lifetime imaging microscopy also show that the dyes experience unique local environments within different zones. Our strategy is then extended to simultaneously incorporate mixtures of dyes, whose fluorescence cascade creates calcite nanoparticles that fluoresce white. This offers a simple strategy for generating biocompatible and stable fluorescent nanoparticles whose output can be tuned as required.

3.
J Synchrotron Radiat ; 23(Pt 6): 1490-1497, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787255

RESUMO

Scanning X-ray fluorescence microscopy has been used to probe the distribution of S, P and Fe within cell nuclei. Nuclei, which may have originated at different phases of the cell cycle, are found to show very different levels of Fe present with a strongly inhomogeneous distribution. P and S signals, presumably from DNA and associated nucleosomes, are high and relatively uniform across all the nuclei; these agree with X-ray phase contrast projection microscopy images of the same samples. Possible reasons for the Fe incorporation are discussed.


Assuntos
Células Eucarióticas , Núcleo Celular , Ferro , Microscopia de Fluorescência
4.
Sci Rep ; 6: 31417, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27526631

RESUMO

Chromatin undergoes dramatic condensation and decondensation as cells transition between the different phases of the cell cycle. The organization of chromatin in chromosomes is still one of the key challenges in structural biology. Fluorescence lifetime imaging (FLIM), a technique which utilizes a fluorophore's fluorescence lifetime to probe changes in its environment, was used to investigate variations in chromatin compaction in fixed human chromosomes. Fixed human metaphase and interphase chromosomes were labeled with the DNA minor groove binder, DAPI, followed by measurement and imaging of the fluorescence lifetime using multiphoton excitation. DAPI lifetime variations in metaphase chromosome spreads allowed mapping of the differentially compacted regions of chromatin along the length of the chromosomes. The heteromorphic regions of chromosomes 1, 9, 15, 16, and Y, which consist of highly condensed constitutive heterochromatin, showed statistically significant shorter DAPI lifetime values than the rest of the chromosomes. Differences in the DAPI lifetimes for the heteromorphic regions suggest differences in the structures of these regions. DAPI lifetime variations across interphase nuclei showed variation in chromatin compaction in interphase and the formation of chromosome territories. The successful probing of differences in chromatin compaction suggests that FLIM has enormous potential for application in structural and diagnostic studies.


Assuntos
Cromatina/metabolismo , Cromossomos Humanos/metabolismo , Corantes Fluorescentes/análise , Indóis/análise , Imagem Óptica/métodos , Coloração e Rotulagem/métodos , Linfócitos B/fisiologia , Células Cultivadas , Células Epiteliais/fisiologia , Humanos , Interfase , Metáfase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...