Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 18(5): e1010181, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35522715

RESUMO

Gene body methylation (GBM) is an ancestral mode of DNA methylation whose role in development has been obscured by the more prominent roles of promoter and CpG island methylation. The wasp Nasonia vitripennis has little promoter and CpG island methylation, yet retains strong GBM, making it an excellent model for elucidating the roles of GBM. Here we show that N. vitripennis DNA methyltransferase 1a (Nv-Dnmt1a) knockdown leads to failures in cellularization and gastrulation of the embryo. Both of these disrupted events are hallmarks of the maternal-zygotic transition (MZT) in insects. Analysis of the embryonic transcriptome and methylome revealed strong reduction of GBM and widespread disruption of gene expression during embryogenesis after Nv-Dnmt1a knockdown. Strikingly, there was a strong correlation between loss of GBM and reduced gene expression in thousands of methylated loci, consistent with the hypothesis that GBM directly facilitates high levels of transcription. We propose that lower expression levels of methylated genes due to reduced GBM is the crucial direct effect of Nv-Dnmt1 knockdown. Subsequently, the disruption of methylated genes leads to downstream dysregulation of the MZT, culminating in developmental failure at gastrulation.


Assuntos
Vespas , Animais , Ilhas de CpG/genética , Metilação de DNA/genética , Genoma , Vespas/genética , Zigoto/metabolismo
2.
J Dev Biol ; 10(1)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35225961

RESUMO

The Toll signaling pathway is the main source of embryonic DV polarity in the fly Drosophila melanogaster. This pathway appears to have been co-opted from an ancestral innate immunity system within the insects and has been deployed in different ways among insect taxa. Here we report the expression and function of homologs of the important components of the D. melanogaster Toll pathway in the wasp Nasonia vitripennis. We found homologs for all the components; many components had one or more additional paralogs in the wasp relative the fly. We also found significant deviations in expression patterns of N. vitripennis homologs. Finally, we provide some preliminary functional analyses of the N. vitripennis homologs, where we find a mixture of conservation and divergence of function.

3.
Curr Opin Insect Sci ; 50: 100883, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35123121

RESUMO

Germ plasm is a substance capable of driving naive cells toward the germ cell fate. Germ plasm has had multiple independent origins, and takes on diverse forms and functions throughout animals, including in insects. We describe here recent advances in the understanding of the evolution of germ plasm in insects. A major theme that has emerged is the complex and convoluted interactions of germ plasm with symbiotic bacteria within the germline, including at the very origin of oskar, the gene required for assembling germ plasm in insects. Major advancements have also been made in understanding the basic molecular arrangement of germ plasm in insects. These advances demonstrate that further analysis of insect germ plasm will be fruitful in illuminating diverse aspects of evolutionary and developmental biology.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/genética , Células Germinativas , Insetos
4.
G3 (Bethesda) ; 11(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34580730

RESUMO

Males in the parasitoid wasp genus Nasonia have distinct, species-specific, head shapes. The availability of fertile hybrids among the species, along with obligate haploidy of males, facilitates analysis of complex gene interactions in development and evolution. Previous analyses showed that both the divergence in head shape between Nasonia vitripennis and Nasonia giraulti, and the head-specific developmental defects of F2 haploid hybrid males, are governed by multiple changes in networks of interacting genes. Here, we extend our understanding of the gene interactions that affect morphogenesis in male heads. Use of artificial diploid male hybrids shows that alleles mediating developmental defects are recessive, while there are diverse dominance relationships among other head shape traits. At the molecular level, the sex determination locus doublesex plays a major role in male head shape differences, but it is not the only important factor. Introgression of a giraulti region on chromsome 2 reveals a recessive locus that causes completely penetrant head clefting in both males and females in a vitripennis background. Finally, a third species (N. longicornis) was used to investigate the timing of genetic changes related to head morphology, revealing that most changes causing defects arose after the divergence of N. vitripennis from the other species, but prior to the divergence of N. giraulti and N. longicornis from each other. Our results demonstrate that developmental gene networks can be dissected using interspecies crosses in Nasonia, and set the stage for future fine-scale genetic dissection of both head shape and hybrid developmental defects.


Assuntos
Vespas , Animais , Diploide , Epistasia Genética , Feminino , Haploidia , Masculino , Especificidade da Espécie , Vespas/genética
5.
Elife ; 82019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31573513

RESUMO

The Drosophila Fog pathway represents one of the best-understood signaling cascades controlling epithelial morphogenesis. During gastrulation, Fog induces apical cell constrictions that drive the invagination of mesoderm and posterior gut primordia. The cellular mechanisms underlying primordia internalization vary greatly among insects and recent work has suggested that Fog signaling is specific to the fast mode of gastrulation found in some flies. On the contrary, here we show in the beetle Tribolium, whose development is broadly representative for insects, that Fog has multiple morphogenetic functions. It modulates mesoderm internalization and controls a massive posterior infolding involved in gut and extraembryonic development. In addition, Fog signaling affects blastoderm cellularization, primordial germ cell positioning, and cuboidal-to-squamous cell shape transitions in the extraembryonic serosa. Comparative analyses with two other distantly related insect species reveals that Fog's role during cellularization is widely conserved and therefore might represent the ancestral function of the pathway.


Assuntos
Epitélio/embriologia , Epitélio/metabolismo , Proteínas de Insetos/metabolismo , Transdução de Sinais , Tribolium/metabolismo , Animais , Animais Geneticamente Modificados , Blastoderma/embriologia , Blastoderma/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Endocitose , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Insetos/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Morfogênese , Fenótipo , Tribolium/embriologia
6.
BMC Biol ; 17(1): 78, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601213

RESUMO

BACKGROUND: The oosome is the germline determinant in the wasp Nasonia vitripennis and is homologous to the polar granules of Drosophila. Despite a common evolutionary origin and developmental role, the oosome is morphologically quite distinct from polar granules. It is a solid sphere that migrates within the cytoplasm before budding out and forming pole cells. RESULTS: To gain an understanding of both the molecular basis of oosome development and the conserved essential features of germ plasm, we quantified and compared transcript levels between embryo fragments that contained the oosome and those that did not. The identity of the differentially localized transcripts indicated that Nasonia uses a distinct set of molecules to carry out conserved germ plasm functions. In addition, functional testing of a sample of localized transcripts revealed potentially novel mechanisms of ribonucleoprotein assembly and pole cell cellularization in the wasp. CONCLUSIONS: Our results demonstrate that the composition of germ plasm varies significantly within Holometabola, as very few mRNAs share localization to the oosome and polar granules. Some of this variability appears to be related to the unique properties of the oosome relative to the polar granules in Drosophila, and some may be related to differences in pole formation between species. This work will serve as the basis for further investigation into the patterns of germline determinant evolution among insects, the molecular basis of the unique properties of the oosome, and the incorporation of novel components into developmental networks.


Assuntos
Embrião não Mamífero/metabolismo , Células Germinativas/metabolismo , Vespas/embriologia , Vespas/genética , Animais , RNA Mensageiro/metabolismo , Transcriptoma
7.
Curr Opin Insect Sci ; 31: 37-42, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-31109671

RESUMO

Positional and cell fate cues provided maternally to eggs are important factors in the development of many animals. The insects are a model clade where maternal establishment of embryonic axes is widespread and has been a topic of intense classical and molecular embryological analysis. Recently, significant progress has been made in revealing the molecular basis of some classical embryological experiments. In addition, observations of novel forms of maternal positional cues have been made. Finally, it has become increasingly clear that no maternal source of positional information acts alone without input and feedback from zygotic target genes to ensure precise and repeatable pattern formation in the early embryo. These advances will be discussed in the context of historical experiments, our current understanding of how positional cues can be generated, stored, and transmitted in insect ovaries and eggs, and how the nature of the cues can change in evolution.


Assuntos
Padronização Corporal , Insetos/embriologia , Animais , Diferenciação Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Insetos/genética , Morfogênese , Ovário , Óvulo
8.
Genome Biol ; 19(1): 148, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266092

RESUMO

BACKGROUND: How regulatory networks incorporate additional components and how novel genes are functionally integrated into well-established developmental processes are two important and intertwined questions whose answers have major implications for understanding the evolution of development. We recently discovered a set of lineage-restricted genes with strong and specific expression patterns along the dorsal-ventral (DV) axis of the embryo of the wasp Nasonia that may serve as a powerful system for addressing these questions. We sought to both understand the evolutionary history of these genes and to determine their functions in the Nasonia DV patterning system. RESULTS: We have found that the novel DV genes are part of a large family of rapidly duplicating and diverging ankyrin domain-encoding genes that originated most likely by horizontal transfer from a prokaryote in a common ancestor of the wasp superfamily Chalcidoidea. We tested the function of those ankyrin-encoding genes expressed along the DV axis and found that they participate in early embryonic DV patterning. We also developed a new wasp model system (Melittobia) and found that some functional integration of ankyrin genes have been preserved for over 90 million years. CONCLUSIONS: Our results indicate that regulatory networks can incorporate novel genes that then become necessary for stable and repeatable outputs. Even a modest role in developmental networks may be enough to allow novel or duplicate genes to be maintained in the genome and become fully integrated network components.


Assuntos
Repetição de Anquirina , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas de Insetos/genética , Vespas/genética , Animais , Padronização Corporal , Transferência Genética Horizontal , Genes de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Vespas/embriologia
9.
Genesis ; 55(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28432826

RESUMO

The nucleocytoplasmic (N/C) ratio plays a prominent role in the maternal-to-zygotic transition (MZT) in many animals. The effect of the N/C ratio on cell-cycle lengthening and zygotic genome activation (ZGA) has been studied extensively in Drosophila, where haploid embryos experience an additional division prior to completing cellularization and triploid embryos cellularize precociously by one division. In this study, we set out to understand how the obligate difference in ploidy in the haplodiploid wasp, Nasonia, affects the MZT and which aspects of the Drosophila MZT are conserved. While subtle differences in early embryonic development were observed in comparisons among haploid, diploid, and triploid embryos, in all cases embryos cellularize at cell cycle 12. When ZGA was inhibited, both diploid female, and haploid male, embryos went through 12 syncytial divisions and failed to cellularize before dying without further divisions. We also found that key players of the Drosophila MZT are conserved in Nasonia but have novel expression patterns. Our results suggest that zygotically expressed genes have a reduced role in determining the timing of cellularization in Nasonia relative to Drosophila, and that a stronger reliance on a maternal timer is more compatible with species where variations in embryonic ploidy are obligatory.


Assuntos
Desenvolvimento Embrionário/genética , Ploidias , Vespas/genética , Animais , Divisão Celular , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Vespas/embriologia , Zigoto/metabolismo
10.
BMC Evol Biol ; 17(1): 37, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28125957

RESUMO

BACKGROUND: Measuring the evolutionary rate of reproductive isolation is essential to understanding how new species form. Tempo calculations typically rely on fossil records, geological events, and molecular evolution analyses. The speed at which genetically-based hybrid mortality arises, or the "incompatibility clock", is estimated to be millions of years in various diploid organisms and is poorly understood in general. Owing to these extended timeframes, seldom do biologists observe the evolution of hybrid mortality in real time. RESULTS: Here we report the very recent spread and fixation of complete asymmetric F1 hybrid mortality within eight years of laboratory maintenance in the insect model Nasonia. The asymmetric interspecific hybrid mortality evolved in an isogenic stock line of N. longicornis and occurs in crosses to N. vitripennis males. The resulting diploid hybrids exhibit complete failure in dorsal closure during embryogenesis. CONCLUSION: These results comprise a unique case whereby a strong asymmetrical isolation barrier evolved in real time. The spread of this reproductive isolation barrier notably occurred in a small laboratory stock subject to recurrent bottlenecks.


Assuntos
Hibridização Genética , Isolamento Reprodutivo , Vespas/genética , Animais , Evolução Biológica , Feminino , Masculino
11.
PLoS One ; 11(12): e0167431, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907180

RESUMO

Despite recent efforts to sample broadly across metazoan and insect diversity, current sequence resources in the Coleoptera do not adequately describe the diversity of the clade. Here we present deep, staged transcriptomic data for two coleopteran species, Atrachya menetriesi (Faldermann 1835) and Callosobruchus maculatus (Fabricius 1775). Our sampling covered key stages in ovary and early embryonic development in each species. We utilized this data to build combined assemblies for each species which were then analysed in detail. The combined A. menetriesi assembly consists of 228,096 contigs with an N50 of 1,598 bp, while the combined C. maculatus assembly consists of 128,837 contigs with an N50 of 2,263 bp. For these assemblies, 34.6% and 32.4% of contigs were identified using Blast2GO, and 97% and 98.3% of the BUSCO set of metazoan orthologs were present, respectively. We also carried out manual annotation of developmental signalling pathways and found that nearly all expected genes were present in each transcriptome. Our analyses show that both transcriptomes are of high quality. Lastly, we performed read mapping utilising our timed, stage specific RNA samples to identify differentially expressed contigs. The resources presented here will provide a firm basis for a variety of experimentation, both in developmental biology and in comparative genomic studies.


Assuntos
Besouros/genética , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma/genética , Animais , Besouros/classificação , Perfilação da Expressão Gênica , Genômica , Anotação de Sequência Molecular , Transdução de Sinais
12.
Genome Biol ; 17(1): 227, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27832824

RESUMO

BACKGROUND: Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. RESULTS: The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. CONCLUSIONS: Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.


Assuntos
Besouros/genética , Genoma de Inseto/genética , Análise de Sequência de DNA , Animais , Besouros/patogenicidade , Evolução Molecular , Transferência Genética Horizontal , Interações Hospedeiro-Parasita/genética , Espécies Introduzidas , Larva , Árvores/parasitologia
13.
BMC Biol ; 14: 63, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27480122

RESUMO

BACKGROUND: Gene regulatory networks (GRNs) underlie developmental patterning and morphogenetic processes, and changes in the interactions within the underlying GRNs are a major driver of evolutionary processes. In order to make meaningful comparisons that can provide significant insights into the evolution of regulatory networks, homologous networks from multiple taxa must be deeply characterized. One of the most thoroughly characterized GRNs is the dorsoventral (DV) patterning system of the Drosophila melanogaster embryo. We have developed the wasp Nasonia as a comparative DV patterning model because it has shown the convergent evolution of a mode of early embryonic patterning very similar to that of the fly, and it is of interest to know whether the similarity at the gross level also extends to the molecular level. RESULTS: We used RNAi to dorsalize and ventralize Nasonia embryos, RNAseq to quantify transcriptome-wide expression levels, and differential expression analysis to identify genes whose expression levels change in either RNAi case. This led to the identification of >100 genes differentially expressed and regulated along the DV axis. Only a handful of these genes are shared DV components in both fly and wasp. Many of those unique to Nasonia are cytoskeletal and adhesion molecules, which may be related to the divergent cell and tissue behavior observed at gastrulation. In addition, many transcription factors and signaling components are only DV regulated in Nasonia, likely reflecting the divergent upstream patterning mechanisms involved in producing the conserved pattern of cell fates observed at gastrulation. Finally, several genes that lack Drosophila orthologs show robust and distinct expression patterns. These include genes with vertebrate homologs that have been lost in the fly lineage, genes that are found only among Hymenoptera, and several genes that entered the Nasonia genome through lateral transfer from endosymbiotic bacteria. CONCLUSIONS: Altogether, our results provide insights into how GRNs respond to new functional demands and how they can incorporate novel components.


Assuntos
Padronização Corporal/genética , Redes Reguladoras de Genes , Vespas/embriologia , Vespas/genética , Animais , Besouros/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Ectoderma/embriologia , Ectoderma/metabolismo , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Mesoderma/embriologia , Mesoderma/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Zigoto/metabolismo
14.
Curr Opin Genet Dev ; 39: 116-128, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27399647

RESUMO

The number of insect species that are amenable to functional genetic studies is growing rapidly and provides many new research opportunities in developmental and evolutionary biology. The holometabolous insects represent a disproportionate percentage of animal diversity and are thus well positioned to provide model species for a wide variety of developmental processes. Here we discuss emerging holometabolous models, and review some recent breakthroughs. For example, flies and midges were found to use structurally unrelated long-range pattern organizers, butterflies and moths revealed extensive pattern formation during oogenesis, new imaging possibilities in the flour beetle Tribolium castaneum showed how embryos break free of their extraembryonic membranes, and the complex genetics governing interspecies difference in head shape were revealed in Nasonia wasps.


Assuntos
Evolução Molecular , Filogenia , Tribolium/genética , Animais , Padronização Corporal/genética , Modelos Genéticos , Oogênese/genética , Tribolium/crescimento & desenvolvimento
15.
Curr Opin Insect Sci ; 13: 99-105, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27088076

RESUMO

The establishment of the germline is essential for sexually reproducing organisms. In animals, there are two major strategies to specify the germline: maternal provision and zygotic induction. The molecular basis of the maternal provision mode has been well characterized in several model organisms (fly, frog, fish, and nematode), while that of the zygotic induction mode has mainly been studied in mammalian models such as the mouse. Shifts in germline determination modes occur unexpectedly frequently and many such shifts have occurred several times among insects. Given their general tractability and rapidly increasing genomic and genetic tools applicable to many species, the insects present a uniquely powerful model system for understanding major transitions in reproductive strategies, and developmental processes in general.

16.
Dev Biol ; 415(2): 391-405, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26721604

RESUMO

The animal head is a complex structure where numerous sensory, structural and alimentary structures are concentrated and integrated, and its ontogeny requires precise and delicate interactions among genes, cells, and tissues. Thus, it is perhaps unsurprising that craniofacial abnormalities are among the most common birth defects in people, or that these defects have a complex genetic basis involving interactions among multiple loci. Developmental processes that depend on such epistatic interactions become exponentially more difficult to study in diploid organisms as the number of genes involved increases. Here, we present hybrid haploid males of the wasp species pair Nasonia vitripennis and Nasonia giraulti, which have distinct male head morphologies, as a genetic model of craniofacial development that possesses the genetic advantages of haploidy, along with many powerful genomic tools. Viable, fertile hybrids can be made between the species, and quantitative trail loci related to shape differences have been identified. In addition, a subset of hybrid males show head abnormalities, including clefting at the midline and asymmetries. Crucially, epistatic interactions among multiple loci underlie several developmental differences and defects observed in the F2 hybrid males. Furthermore, we demonstrate an introgression of a chromosomal region from N. giraulti into N. vitripennis that shows an abnormality in relative eye size, which maps to a region containing a major QTL for this trait. Therefore, the genetic sources of head morphology can, in principle, be identified by positional cloning. Thus, Nasonia is well positioned to be a uniquely powerful model invertebrate system with which to probe both development and complex genetics of craniofacial patterning and defects.


Assuntos
Anormalidades Craniofaciais , Modelos Animais de Doenças , Epistasia Genética , Genes de Insetos , Cabeça/anatomia & histologia , Vespas/genética , Animais , Biometria , Padronização Corporal/genética , Mapeamento Cromossômico , Cromossomos de Insetos/genética , Feminino , Haploidia , Cabeça/anormalidades , Hibridização Genética , Masculino , Locos de Características Quantitativas , Caracteres Sexuais , Especificidade da Espécie , Vespas/anatomia & histologia
17.
Elife ; 4: e05502, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25962855

RESUMO

Toll-dependent patterning of the dorsoventral axis in Drosophila represents one of the best understood gene regulatory networks. However, its evolutionary origin has remained elusive. Outside the insects Toll is not known for a patterning function, but rather for a role in pathogen defense. Here, we show that in the milkweed bug Oncopeltus fasciatus, whose lineage split from Drosophila's more than 350 million years ago, Toll is only required to polarize a dynamic BMP signaling network. A theoretical model reveals that this network has self-regulatory properties and that shallow Toll signaling gradients are sufficient to initiate axis formation. Such gradients can account for the experimentally observed twinning of insect embryos upon egg fragmentation and might have evolved from a state of uniform Toll activity associated with protecting insect eggs against pathogens.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Heterópteros/genética , Proteínas de Insetos/genética , Transdução de Sinais/genética , Receptores Toll-Like/genética , Animais , Evolução Biológica , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/classificação , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero , Heterópteros/classificação , Heterópteros/citologia , Heterópteros/embriologia , Proteínas de Insetos/metabolismo , Modelos Biológicos , Filogenia , Receptores Toll-Like/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Zigoto/citologia , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
18.
Genetics ; 199(4): 897-904, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25855650

RESUMO

The parasitoid wasp Nasonia represents a genus of four species that is emerging as a powerful genetic model system that has made and will continue to make important contributions to our understanding of evolutionary biology, development, ecology, and behavior. Particularly powerful are the haplodiploid genetics of the system, which allow some of the advantages of microbial genetics to be applied to a complex multicellular eukaryote. In addition, fertile, viable hybrids can be made among the four species in the genus. This makes Nasonia exceptionally well suited for evolutionary genetics approaches, especially when combined with its haploid genetics and tractability in the laboratory. These features are complemented by an expanding array of genomic, transcriptomic, and functional resources, the application of which has already made Nasonia an important model system in such emerging fields as evolutionary developmental biology and microbiomics. This article describes the genetic and genomic advantages of Nasonia wasps and the resources available for their genetic analysis.


Assuntos
Genoma de Inseto , Vespas/genética , Animais , Animais Geneticamente Modificados/genética , Engenharia Genética/métodos , Haploidia , Hibridização Genética
19.
Curr Biol ; 24(20): 2393-8, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25308075

RESUMO

In Drosophila, Toll signaling leads to a gradient of nuclear uptake of Dorsal with a peak at the ventral egg pole and is the source for dorsoventral (DV) patterning and polarity of the embryo. In contrast, Toll signaling plays no role in embryonic patterning in most animals, while BMP signaling plays the major role. In order to understand the origin of the novelty of the Drosophila system, we have examined DV patterning in Nasonia vitripennis (Nv), a representative of the Hymenoptera and thus the most ancient branch points within the Holometabola. We have previously shown that while the expression of several conserved DV patterning genes is almost identical in Nasonia and Drosophila embryos at the onset of gastrulation, the ways these patterns evolve in early embryogenesis are very different from what is seen in Drosophila or the beetle Tribolium. In contrast to Drosophila or Tribolium, we find that wasp Toll has a very limited ventral role, whereas BMP is required for almost all DV polarity of the embryo, and these two signaling systems act independently of each other to generate DV polarity. This result gives insights into how the Toll pathway could have usurped a BMP-based DV patterning system in insects. In addition, our work strongly suggests that a novel system for BMP activity gradient formation must be employed in the wasp, since orthologs of crucial components of the fly system are either missing entirely or lack function in the embryo.


Assuntos
Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Vespas/embriologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Drosophila/embriologia , Perfilação da Expressão Gênica , Transdução de Sinais/fisiologia , Especificidade da Espécie , Vespas/fisiologia
20.
Dev Genes Evol ; 224(4-6): 223-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25304164

RESUMO

The transforming growth factor beta (TGF)-ß signaling pathway and its modulators are involved in many aspects of cellular growth and differentiation in all metazoa. Although most of the core components of the pathway are highly conserved, many lineage-specific adaptations have been observed including changes regarding paralog number, presence and absence of modulators, and functional relevance for particular processes. In the parasitic jewel wasp Nasonia vitripennis, the bone morphogenetic proteins (BMPs), one of the major subgroups of the TGF-ß superfamily, play a more fundamental role in dorsoventral (DV) patterning than in all other insects studied so far. However, Nasonia lacks the BMP antagonist Short gastrulation (Sog)/chordin, which is essential for polarizing the BMP gradient along the DV axis in most bilaterian animals. Here, we present a broad survey of TGF-ß signaling in Nasonia with the aim to detect other lineage-specific peculiarities and to identify potential mechanisms, which explain how BMP-dependent DV pattering occurs in the early Nasonia embryo in the absence of Sog.


Assuntos
Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Vespas/genética , Vespas/metabolismo , Animais , Padronização Corporal , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Filogenia , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/genética , Vespas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...