Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(7): e17413, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982678

RESUMO

Tasmanian eucalypt forests are among the most carbon-dense in the world, but projected climate change could destabilize this critical carbon sink. While the impact of abiotic factors on forest ecosystem carbon dynamics have received considerable attention, biotic factors such as the input of animal scat are less understood. Tasmanian devils (Sarcophilus harrisii)-an osteophageous scavenger that can ingest and solubilize nutrients locked in bone material-may subsidize plant and microbial productivity by concentrating bioavailable nutrients (e.g., nitrogen and phosphorus) in scat latrines. However, dramatic declines in devil population densities, driven by the spread of a transmissible cancer, may have underappreciated consequences for soil organic carbon (SOC) storage and forest productivity by altering nutrient cycling. Here, we fuse experimental data and modeling to quantify and predict future changes to forest productivity and SOC under various climate and scat-quality futures. We find that devil scat significantly increases concentrations of nitrogen, ammonium, phosphorus, and phosphate in the soil and shifts soil microbial communities toward those dominated by r-selected (e.g., fast-growing) phyla. Further, under expected increases in temperature and changes in precipitation, devil scat inputs are projected to increase above- and below-ground net primary productivity and microbial biomass carbon through 2100. In contrast, when devil scat is replaced by lower-quality scat (e.g., from non-osteophageous scavengers and herbivores), forest carbon pools are likely to increase more slowly, or in some cases, decline. Together, our results suggest often overlooked biotic factors will interact with climate change to drive current and future carbon pool dynamics in Tasmanian forests.


Assuntos
Mudança Climática , Florestas , Marsupiais , Solo , Animais , Carbono/metabolismo , Carbono/análise , Marsupiais/fisiologia , Nitrogênio/metabolismo , Nitrogênio/análise , Fósforo/análise , Fósforo/metabolismo , Dinâmica Populacional , Solo/química , Microbiologia do Solo , Tasmânia
2.
Nat Microbiol ; 9(3): 585-586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347105

Assuntos
Ecossistema , Solo
3.
Trends Ecol Evol ; 39(2): 152-164, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37816662

RESUMO

Carrion decomposition is fundamental to nutrient cycling in terrestrial ecosystems because it provides a high-quality resource to diverse organisms. A conceptual framework incorporating all phases of carrion decomposition with the full community of scavengers is needed to predict the effects of global change on core ecosystem processes. Because global change can differentially impact scavenger guilds and rates of carrion decomposition, our framework explicitly incorporates complex interactions among microbial, invertebrate, and vertebrate scavenger communities across three distinct phases of carcass decomposition. We hypothesize that carrion decomposition rates will be the most impacted when global change affects carcass discovery rates and the foraging behavior of competing scavenger guilds.


Assuntos
Ecossistema , Vertebrados , Animais , Peixes
4.
FEMS Microbiol Ecol ; 99(11)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37771081

RESUMO

Litter decomposition is a fundamental ecosystem process controlling the biogeochemical cycling of energy and nutrients. Using a 360-day lab incubation experiment to control for environmental factors, we tested how litter quality (low C/N deciduous vs. high C/N coniferous litter) governed the assembly and taxonomic composition of bacterial communities and rates of litter decomposition. Overall, litter mass loss was significantly faster in soils amended with deciduous (DL) rather than coniferous (CL) litter. Communities degrading DL were also more taxonomically diverse and exhibited stochastic assembly throughout the experiment. By contrast, alpha-diversity rapidly declined in communities exposed to CL. Strong environmental selection and competitive biological interactions induced by molecularly complex, nutrient poor CL were reflected in a transition from stochastic to deterministic assembly after 180 days. Constraining how the diversity and assembly of microbial populations modulates core ecosystem processes, such as litter decomposition, will become increasingly important under novel climate conditions, and as policymakers and land managers emphasize soil carbon sequestration as a key natural climate solution.


Assuntos
Ecossistema , Plantas , Clima , Solo/química , Bactérias/genética , Folhas de Planta/química , Microbiologia do Solo
5.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481693

RESUMO

Forest disturbance has well-characterized effects on soil microbial communities in tropical and northern hemisphere ecosystems, but little is known regarding effects of disturbance in temperate forests of the southern hemisphere. To address this question, we collected soils from intact and degraded Eucalyptus forests along an east-west transect across Tasmania, Australia, and characterized prokaryotic and fungal communities using amplicon sequencing. Forest degradation altered soil microbial community composition and function, with consistent patterns across soil horizons and regions of Tasmania. Responses of prokaryotic communities included decreased relative abundance of Acidobacteriota, nitrifying archaea, and methane-oxidizing prokaryotes in the degraded forest sites, while fungal responses included decreased relative abundance of some saprotrophic taxa (e.g. litter saprotrophs). Forest degradation also reduced network connectivity in prokaryotic communities and increased the importance of dispersal limitation in assembling both prokaryotic and fungal communities, suggesting recolonization dynamics drive microbial composition following disturbance. Further, changes in microbial functional groups reflected changes in soil chemical properties-reductions in nitrifying microorganisms corresponded with reduced NO3-N pools in the degraded soils. Overall, our results show that soil microbiota are highly responsive to forest degradation in eucalypt forests and demonstrate that microbial responses to degradation will drive changes in key forest ecosystem functions.


Assuntos
Microbiota , Micobioma , Florestas , Células Procarióticas , Solo
6.
Proc Natl Acad Sci U S A ; 120(25): e2303335120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307452

RESUMO

Soil organic matter (SOM) is comprised of a diverse array of reactive carbon molecules, including hydrophilic and hydrophobic compounds, that impact rates of SOM formation and persistence. Despite clear importance to ecosystem science, little is known about broad-scale controls on SOM diversity and variability in soil. Here, we show that microbial decomposition drives significant variability in the molecular richness and diversity of SOM between soil horizons and across a continental-scale gradient in climate and ecosystem type (arid shrubs, coniferous, deciduous, and mixed forests, grasslands, and tundra sedges). The molecular dissimilarity of SOM was strongly influenced by ecosystem type (hydrophilic compounds: 17%, P < 0.001; hydrophobic compounds: 10% P < 0.001) and soil horizon (hydrophilic compounds: 17%, P < 0.001; hydrophobic compounds: 21%, P < 0.001), as assessed using metabolomic analysis of hydrophilic and hydrophobic metabolites. While the proportion of shared molecular features was significantly higher in the litter layer than subsoil C horizons across ecosystems (12 times and 4 times higher for hydrophilic and hydrophobic compounds, respectively), the proportion of site-specific molecular features nearly doubled from the litter layer to the subsoil horizon, suggesting greater differentiation of compounds after microbial decomposition within each ecosystem. Together, these results suggest that microbial decomposition of plant litter leads to a decrease in SOM α-molecular diversity, yet an increase in ß-molecular diversity across ecosystems. The degree of microbial degradation, determined by the position in the soil profile, exerts a greater control on SOM molecular diversity than environmental factors, such as soil texture, moisture, and ecosystem type.


Assuntos
Ecossistema , Florestas , Tundra , Carbono , Solo
7.
Water Res ; 188: 116571, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137528

RESUMO

Clay-polymer nanocomposites (CPNs) have been studied for two decades as sorbents for water pollutants, but their applicability remains limited. Our aim in this review is to present the latest progress in CPN research using a meta-analysis approach and identify key steps necessary to bridge the gap between basic research and CPN application. Based on results extracted from 99 research articles on CPNs and 8 review articles on other widely studies sorbents, CPNs had higher adsorption capacities for several inorganic and organic pollutant classes (including heavy metals, oxyanions, and dyes, n = 308 observations). We applied principal component analysis, analysis of variance, and multiple linear regressions to test how CPN and pollutant properties correlated with Langmuir adsorption model coefficients. While adsorption was, surprisingly, not influenced by mineral properties, it was influenced by CPN fabrication method, polymer functional groups, and pollutant properties. For example, among the pollutant classes, heavy metals had the highest adsorption capacity but the lowest adsorption affinity. On the other hand, dyes had high adsorption affinities, as reflected by the linear correlation between adsorption affinity and pollutant molecular weight. Scaling from 'basic research' to 'technological application' requires testing CPN performance in real water, application in columns, comparison to commercial sorbents, regeneration, and cost evaluation. However, our survey indicates that of the 158 observations, only 20 compared the CPN's performance to that of a commercial sorbent. We anticipate that this review will promote the design of smart and functional CPNs, which can then evolve into an effective water treatment technology.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Argila , Polímeros , Água , Poluentes Químicos da Água/análise
8.
Nat Commun ; 10(1): 459, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692547

RESUMO

Biogeochemical processing of dissolved organic matter (DOM) in headwater rivers regulates aquatic food web dynamics, water quality, and carbon storage. Although headwater rivers are critical sources of energy to downstream ecosystems, underlying mechanisms structuring DOM composition and reactivity are not well quantified. By pairing mass spectrometry and fluorescence spectroscopy, here we show that hydrology and river geomorphology interactively shape molecular patterns in DOM composition. River segments with a single channel flowing across the valley bottom export DOM with a similar chemical profile through time. In contrast, segments with multiple channels of flow store large volumes of water during peak flows, which they release downstream throughout the summer. As flows subside, losses of lateral floodplain connectivity significantly increase the heterogeneity of DOM exported downstream. By linking geomorphologic landscape-scale processes with microbial metabolism, we show DOM heterogeneity increases as a function of fluvial complexity, with implications for ecosystem function and watershed management.


Assuntos
Carbono/análise , Ecossistema , Compostos Orgânicos/análise , Rios/química , Água/análise , Colorado , Geografia , Espectrometria de Massas , Estações do Ano , Espectrometria de Fluorescência , Poluentes da Água/análise , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...