Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 9(1): e0032223, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38088556

RESUMO

Medusae of the widely distributed upside-down jellyfish Cassiopea release autonomous, mobile stinging structures. These so-called cassiosomes play a role in predator defense and prey capture, and are major contributors to "contactless" stinging incidents in (sub-)tropical shallow waters. While the presence of endosymbiotic dinoflagellates in cassiosomes has previously been observed, their potential contribution to the metabolism and long-term survival of cassiosomes is unknown. Combining stable isotope labeling and correlative scanning electron microscopy and nanoscale secondary ion mass spectrometry imaging with a long-term in vitro experiment, our study reveals a mutualistic symbiosis based on nutritional exchanges in dinoflagellate-bearing cassiosomes. We show that organic carbon input from the dinoflagellates fuels the metabolism of the host tissue and enables anabolic nitrogen assimilation. This symbiotic nutrient exchange enhances the life span of cassiosomes for at least one month in vitro. Overall, our study demonstrates that cassiosomes, in analogy with Cassiopea medusae, are photosymbiotic holobionts. Cassiosomes, which are easily accessible under aquarium conditions, promise to be a powerful new miniaturized model system for in-depth ultrastructural and molecular investigation of cnidarian photosymbioses.IMPORTANCEThe upside-down jellyfish Cassiopea releases autonomous tissue structures, which are a major cause of contactless stinging incidents in (sub-) tropical coastal waters. These so-called cassiosomes frequently harbor algal symbionts, yet their role in cassiosome functioning and survival is unknown. Our results show that cassiosomes are metabolically active and supported by algal symbionts. Algal photosynthesis enhances the cassiosomes long-term survival in the light. This functional understanding of cassiosomes thereby contributes to explaining the prevalence of contactless stinging incidents and the ecological success of some Cassiopea species. Finally, we show that cassiosomes are miniaturized symbiotic holobionts that can be used to study host-microbe interactions in a simplified system.


Assuntos
Dinoflagellida , Simbiose , Nitrogênio/metabolismo , Carbono/metabolismo , Fotossíntese
2.
Proc Biol Sci ; 290(2007): 20230127, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752841

RESUMO

The jellyfish Cassiopea largely cover their carbon demand via photosynthates produced by microalgal endosymbionts, but how holobiont morphology and tissue optical properties affect the light microclimate and symbiont photosynthesis in Cassiopea remain unexplored. Here, we use optical coherence tomography (OCT) to study the morphology of Cassiopea medusae at high spatial resolution. We include detailed 3D reconstructions of external micromorphology, and show the spatial distribution of endosymbionts and white granules in the bell tissue. Furthermore, we use OCT data to extract inherent optical properties from light-scattering white granules in Cassiopea, and show that granules enhance local light-availability for symbionts in close proximity. Individual granules had a scattering coefficient of µs = 200-300 cm-1, and scattering anisotropy factor of g = 0.7, while large tissue-regions filled with white granules had a lower µs = 40-100 cm-1, and g = 0.8-0.9. We combined OCT information with isotopic labelling experiments to investigate the effect of enhanced light-availability in whitish tissue regions. Endosymbionts located in whitish tissue exhibited significantly higher carbon fixation compared to symbionts in anastomosing tissue (i.e. tissue without light-scattering white granules). Our findings support previous suggestions that white granules in Cassiopea play an important role in the host modulation of the light-microenvironment.


Assuntos
Cnidários , Cifozoários , Animais , Tomografia de Coerência Óptica , Luz , Carbono
3.
Proc Biol Sci ; 287(1941): 20202393, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33323078

RESUMO

The upside-down jellyfish Cassiopea engages in symbiosis with photosynthetic microalgae that facilitate uptake and recycling of inorganic nutrients. By contrast to most other symbiotic cnidarians, algal endosymbionts in Cassiopea are not restricted to the gastroderm but are found in amoebocyte cells within the mesoglea. While symbiont-bearing amoebocytes are highly abundant, their role in nutrient uptake and cycling in Cassiopea remains unknown. By combining isotopic labelling experiments with correlated scanning electron microscopy, and Nano-scale secondary ion mass spectrometry (NanoSIMS) imaging, we quantified the anabolic assimilation of inorganic carbon and nitrogen at the subcellular level in juvenile Cassiopea medusae bell tissue. Amoebocytes were clustered near the sub-umbrella epidermis and facilitated efficient assimilation of inorganic nutrients. Photosynthetically fixed carbon was efficiently translocated between endosymbionts, amoebocytes and host epidermis at rates similar to or exceeding those observed in corals. The Cassiopea holobionts efficiently assimilated ammonium, while no nitrate assimilation was detected, possibly reflecting adaptation to highly dynamic environmental conditions of their natural habitat. The motile amoebocytes allow Cassiopea medusae to distribute their endosymbiont population to optimize access to light and nutrients, and transport nutrition between tissue areas. Amoebocytes thus play a vital role for the assimilation and translocation of nutrients in Cassiopea, providing an interesting new model for studies of metabolic interactions in photosymbiotic marine organisms.


Assuntos
Dinoflagellida/fisiologia , Cifozoários/fisiologia , Simbiose/fisiologia , Compostos de Amônio , Animais , Antozoários , Ecossistema , Nitrogênio/metabolismo , Nutrientes , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...