Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 4(1): 37, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27079381

RESUMO

A non-coding hexanucleotide repeat expansion (HRE) in C9orf72 is a common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) acting through a loss of function mechanism due to haploinsufficiency of C9orf72 or a gain of function mediated by aggregates of bidirectionally transcribed HRE-RNAs translated into di-peptide repeat (DPR) proteins. To fully understand regulation of C9orf72 expression we surveyed the C9orf72 locus using Cap Analysis of Gene Expression sequence data (CAGEseq). We observed C9orf72 was generally lowly expressed with the exception of a subset of myeloid cells, particularly CD14+ monocytes that showed up to seven fold higher expression as compared to central nervous system (CNS) and other tissues. The expression profile at the C9orf72 locus showed a complex architecture with differential expression of the transcription start sites (TSSs) for the annotated C9orf72 transcripts between myeloid and CNS tissues suggesting cell and/or tissue specific functions. We further detected novel TSSs in both the sense and antisense strand at the C9orf72 locus and confirmed their existence in brain tissues and CD14+ monocytes. Interestingly, our experiments showed a consistent decrease of C9orf72 coding transcripts not only in brain tissue and monocytes from C9orf72-HRE patients, but also in brains from MAPT and GRN mutation carriers together with an increase in antisense transcripts suggesting these could play a role in regulation of C9orf72. We found that the non-HRE related expression changes cannot be explained by promoter methylation but by the presence of the C9orf72-HRE risk haplotype and unknown functional interactions between C9orf72, MAPT and GRN.


Assuntos
Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação/genética , Células Mieloides/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas tau/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72 , Bases de Dados Factuais/normas , Bases de Dados Factuais/estatística & dados numéricos , Demência Frontotemporal/metabolismo , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Progranulinas
2.
Exp Neurol ; 262 Pt B: 102-10, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24873727

RESUMO

An expanded GGGGCC hexanucleotide repeat in the first intron located between the 1st and 2nd non-coding exons of C9orf72 is the most frequent cause of frontotemporal dementia (FTD) and amyothropic lateral sclerosis (ALS). C9orf72 is a protein with largely unknown function and insight into the disease mechanism caused by the repeat expansion is still in an early stage but increases at an amazing pace. Three main hypotheses are currently being considered to explain the disease process including haploinsuffiency due to the loss of expression from the mutated allele, RNA toxicity caused by accumulation of repeat containing transcripts and toxic protein species generated by the abnormal translation of repeat sequences. We review the current status of genetic, population and functional data and discuss the current insights into the biology of C9orf72 and this repeat expansion disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Mutação/genética , Proteínas/genética , RNA/metabolismo , Esclerose Lateral Amiotrófica/complicações , Proteína C9orf72 , Demência Frontotemporal/complicações , Predisposição Genética para Doença/genética , Humanos
3.
J Cell Sci ; 126(Pt 17): 3893-903, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23843619

RESUMO

The palmitoylation of calnexin serves to enrich calnexin on the mitochondria-associated membrane (MAM). Given a lack of information on the significance of this finding, we have investigated how this endoplasmic reticulum (ER)-internal sorting signal affects the functions of calnexin. Our results demonstrate that palmitoylated calnexin interacts with sarcoendoplasmic reticulum (SR) Ca(2+) transport ATPase (SERCA) 2b and that this interaction determines ER Ca(2+) content and the regulation of ER-mitochondria Ca(2+) crosstalk. In contrast, non-palmitoylated calnexin interacts with the oxidoreductase ERp57 and performs its well-known function in quality control. Interestingly, our results also show that calnexin palmitoylation is an ER-stress-dependent mechanism. Following a short-term ER stress, calnexin quickly becomes less palmitoylated, which shifts its function from the regulation of Ca(2+) signaling towards chaperoning and quality control of known substrates. These changes also correlate with a preferential distribution of calnexin to the MAM under resting conditions, or the rough ER and ER quality control compartment (ERQC) following ER stress. Our results have therefore identified the switch that assigns calnexin either to Ca(2+) signaling or to protein chaperoning.


Assuntos
Calnexina/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Lipoilação/fisiologia , Membranas Mitocondriais/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Células 3T3 , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Retículo Endoplasmático/metabolismo , Fibroblastos , Células HEK293 , Células HeLa , Humanos , Camundongos , Mitocôndrias/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo
4.
EMBO J ; 31(2): 457-70, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22045338

RESUMO

The mitochondria-associated membrane (MAM) is a domain of the endoplasmic reticulum (ER) that mediates the exchange of ions, lipids and metabolites between the ER and mitochondria. ER chaperones and oxidoreductases are critical components of the MAM. However, the localization motifs and mechanisms for most MAM proteins have remained elusive. Using two highly related ER oxidoreductases as a model system, we now show that palmitoylation enriches ER-localized proteins on the MAM. We demonstrate that palmitoylation of cysteine residue(s) adjacent to the membrane-spanning domain promotes MAM enrichment of the transmembrane thioredoxin family protein TMX. In addition to TMX, our results also show that calnexin shuttles between the rough ER and the MAM depending on its palmitoylation status. Mutation of the TMX and calnexin palmitoylation sites and chemical interference with palmitoylation disrupt their MAM enrichment. Since ER-localized heme oxygenase-1, but not cytosolic GRP75 require palmitoylation to reside on the MAM, our findings identify palmitoylation as key for MAM enrichment of ER membrane proteins.


Assuntos
Calnexina/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Animais , Calnexina/química , Calnexina/genética , Linhagem Celular Tumoral , Cisteína/metabolismo , Cães , Células HeLa , Heme Oxigenase-1/metabolismo , Humanos , Lipoilação , Melanoma/patologia , Camundongos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Transporte Proteico
5.
Biochim Biophys Acta ; 1813(10): 1893-905, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21756943

RESUMO

The endoplasmic reticulum (ER) is the biggest organelle in most cell types, but its characterization as an organelle with a continuous membrane belies the fact that the ER is actually an assembly of several, distinct membrane domains that execute diverse functions. Almost 20 years ago, an essay by Sitia and Meldolesi first listed what was known at the time about domain formation within the ER. In the time that has passed since, additional ER domains have been discovered and characterized. These include the mitochondria-associated membrane (MAM), the ER quality control compartment (ERQC), where ER-associated degradation (ERAD) occurs, and the plasma membrane-associated membrane (PAM). Insight has been gained into the separation of nuclear envelope proteins from the remainder of the ER. Research has also shown that the biogenesis of peroxisomes and lipid droplets occurs on specialized membranes of the ER. Several studies have shown the existence of specific marker proteins found on all these domains and how they are targeted there. Moreover, a first set of cytosolic ER-associated sorting proteins, including phosphofurin acidic cluster sorting protein 2 (PACS-2) and Rab32 have been identified. Intra-ER targeting mechanisms appear to be superimposed onto ER retention mechanisms and rely on transmembrane and cytosolic sequences. The crucial roles of ER domain formation for cell physiology are highlighted with the specific targeting of the tumor metastasis regulator gp78 to ERAD-mediating membranes or of the promyelocytic leukemia protein to the MAM.


Assuntos
Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Transdução de Sinais/fisiologia , Animais , Membrana Celular/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/fisiologia , Modelos Biológicos , Transporte Proteico/fisiologia
6.
J Biol Chem ; 285(41): 31590-602, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20670942

RESUMO

The mitochondria-associated membrane (MAM) has emerged as an endoplasmic reticulum (ER) signaling hub that accommodates ER chaperones, including the lectin calnexin. At the MAM, these chaperones control ER homeostasis but also play a role in the onset of ER stress-mediated apoptosis, likely through the modulation of ER calcium signaling. These opposing roles of MAM-localized chaperones suggest the existence of mechanisms that regulate the composition and the properties of ER membrane domains. Our results now show that the GTPase Rab32 localizes to the ER and mitochondria, and we identify this protein as a regulator of MAM properties. Consistent with such a role, Rab32 modulates ER calcium handling and disrupts the specific enrichment of calnexin on the MAM, while not affecting the ER distribution of protein-disulfide isomerase and mitofusin-2. Furthermore, Rab32 determines the targeting of PKA to mitochondrial and ER membranes and through its overexpression or inactivation increases the phosphorylation of Bad and of Drp1. Through a combination of its functions as a PKA-anchoring protein and a regulator of MAM properties, the activity and expression level of Rab32 determine the speed of apoptosis onset.


Assuntos
Apoptose/fisiologia , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Cálcio/metabolismo , Calnexina/genética , Calnexina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retículo Endoplasmático/genética , GTP Fosfo-Hidrolases , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Proteínas rab de Ligação ao GTP/genética
7.
Biochim Biophys Acta ; 1798(8): 1465-73, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20430008

RESUMO

The production of secretory proteins at the ER (endoplasmic reticulum) depends on a ready supply of energy and metabolites as well as the close monitoring of the chemical conditions that favor oxidative protein folding. ER oxidoreductases and chaperones fold nascent proteins into their export-competent three-dimensional structure. Interference with these protein folding enzymes leads to the accumulation of unfolded proteins within the ER lumen, causing an acute organellar stress that triggers the UPR (unfolded protein response). The UPR increases the transcription of ER chaperones commensurate with the load of newly synthesized proteins and can protect the cell from ER stress. Persistant stress, however, can force the UPR to commit cells to undergo apoptotic cell death, which requires the emptying of ER calcium stores. Conversely, a continuous ebb and flow of calcium occurs between the ER and mitochondria during resting conditions on a domain of the ER that forms close contacts with mitochondria, the MAM (mitochondria-associated membrane). On the MAM, ER folding chaperones such as calnexin and calreticulin and oxidoreductases such as ERp44, ERp57 and Ero1alpha regulate calcium flux from the ER through reversible, calcium and redox-dependent interactions with IP3Rs (inositol 1,4,5-trisphophate receptors) and with SERCAs (sarcoplasmic/endoplasmic reticulum calcium ATPases). During apoptosis progression and depending on the identity of the ER chaperone and oxidoreductase, these interactions increase or decrease, suggesting that the extent of MAM targeting of ER chaperones and oxidoreductases could shift the readout of ER-mitochondria calcium exchange from housekeeping to apoptotic. However, little is known about the cytosolic factors that mediate the on/off interactions between ER chaperones and oxidoreductases with ER calcium channels and pumps. One candidate regulator is the multi-functional molecule PACS-2 (phosphofurin acidic cluster sorting protein-2). Recent studies suggest that PACS-2 mediates localization of a mobile pool of calnexin to the MAM in addition to regulating homeostatic ER calcium signaling as well as MAM integrity. Together, these findings suggest that cytosolic, membrane and lumenal proteins combine to form a two-way switch that determines the rate of protein secretion by providing ions and metabolites and that appears to participate in the pro-apoptotic ER-mitochondria calcium transfer.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Mitocondriais/metabolismo , Dobramento de Proteína , Trifosfato de Adenosina/metabolismo , Animais , Sinalização do Cálcio , Metabolismo Energético , Humanos , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Oxirredução , Oxirredutases/metabolismo , Estresse Fisiológico , Resposta a Proteínas não Dobradas
8.
Cell Stress Chaperones ; 15(5): 619-29, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20186508

RESUMO

Protein secretion from the endoplasmic reticulum (ER) requires the enzymatic activity of chaperones and oxidoreductases that fold polypeptides and form disulfide bonds within newly synthesized proteins. The best-characterized ER redox relay depends on the transfer of oxidizing equivalents from molecular oxygen through ER oxidoreductin 1 (Ero1) and protein disulfide isomerase to nascent polypeptides. The formation of disulfide bonds is, however, not the sole function of ER oxidoreductases, which are also important regulators of ER calcium homeostasis. Given the role of human Ero1alpha in the regulation of the calcium release by inositol 1,4,5-trisphosphate receptors during the onset of apoptosis, we hypothesized that Ero1alpha may have a redox-sensitive localization to specific domains of the ER. Our results show that within the ER, Ero1alpha is almost exclusively found on the mitochondria-associated membrane (MAM). The localization of Ero1alpha on the MAM is dependent on oxidizing conditions within the ER. Chemical reduction of the ER environment, but not ER stress in general leads to release of Ero1alpha from the MAM. In addition, the correct localization of Ero1alpha to the MAM also requires normoxic conditions, but not ongoing oxidative phosphorylation.


Assuntos
Membranas Intracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Western Blotting , Linhagem Celular , Células HeLa , Humanos , Glicoproteínas de Membrana/genética , Microscopia de Fluorescência , Oxirredutases/genética
9.
Mol Biol Cell ; 19(7): 2777-88, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18417615

RESUMO

Calnexin is an endoplasmic reticulum (ER) lectin that mediates protein folding on the rough ER. Calnexin also interacts with ER calcium pumps that localize to the mitochondria-associated membrane (MAM). Depending on ER homeostasis, varying amounts of calnexin target to the plasma membrane. However, no regulated sorting mechanism is so far known for calnexin. Our results now describe how the interaction of calnexin with the cytosolic sorting protein PACS-2 distributes calnexin between the rough ER, the MAM, and the plasma membrane. Under control conditions, more than 80% of calnexin localizes to the ER, with the majority on the MAM. PACS-2 knockdown disrupts the calnexin distribution within the ER and increases its levels on the cell surface. Phosphorylation by protein kinase CK2 of two calnexin cytosolic serines (Ser554/564) reduces calnexin binding to PACS-2. Consistent with this, a Ser554/564 Asp phosphomimic mutation partially reproduces PACS-2 knockdown by increasing the calnexin signal on the cell surface and reducing it on the MAM. PACS-2 knockdown does not reduce retention of other ER markers. Therefore, our results suggest that the phosphorylation state of the calnexin cytosolic domain and its interaction with PACS-2 sort this chaperone between domains of the ER and the plasma membrane.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Calnexina/biossíntese , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Sequência de Aminoácidos , Calnexina/química , Calnexina/fisiologia , Citosol/química , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Transporte Vesicular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...