Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Swiss J Palaeontol ; 143(1): 22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799181

RESUMO

Hutchemys rememdium is a poorly understood softshell turtle (Trionychidae) from the mid Paleocene of the Williston Basin of North America previously known only from postcranial remains. A particularly rich collection of previously undescribed material from the Tiffanian 4 North American Land Mammal Age (NALMA) of North Dakota is here presented consisting of numerous shells that document new variation, some non-shell postcrania, and cranial remains, which are described based on 3D models extracted from micro-CT data. Although the observed shell variation weakens previously noted differences with the younger species Hutchemys arctochelys from the Clarkforkian NALMA, the two taxa are still recognized as distinct. Parsimony and Bayesian phylogenetic analyses reaffirm the previously challenged placement of Hutchemys rememdium within the clade Plastomenidae, mostly based on novel observations of cranial characters made possible by the new material and the micro-CT data. The new topology supports the notion that the well-ossified plastron of plastomenids originated twice in parallel near the Cretaceous/Paleogene boundary, once in the Hutchemys lineage and once in the Gilmoremys/Plastomenus lineage. Hutchemys rememdium is notable for being the only documented species of trionychid in the mid Paleocene of the Williston Basin. The presence of multiple individuals in a carbonaceous claystone indicates this taxon lived in swamps and lakes and its expanded triturating surface suggests it had a durophagous diet. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-024-00315-8.

2.
Swiss J Palaeontol ; 143(1): 2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274637

RESUMO

Saxochelys gilberti is a baenid turtle from the Late Cretaceous Hell Creek Formation of the United States of America known from cranial, shell, and other postcranial material. Baenid turtles are taxonomically diverse and common fossil elements within Late Cretaceous through Eocene faunas. Detailed anatomical knowledge is critical to understanding the systematics and morphological evolution of the group. This is particularly important as baenids represent an important group of continental vertebrates that survived the mass extinction event associated with the Cretaceous/Paleogene boundary. High-resolution micro-computed tomography scanning of the holotype skull reveals additional anatomical details for the already well-known Saxochelys gilberti. This includes the revision of some anatomical statements from the original description, but also detailed knowledge on internal anatomical features of the braincase and the description of a well-preserved axis (cervical vertebra 2). Our new detailed description and previous work on the shell and postcrania make Saxochelys one of the best-described, nearly complete baenid turtles, which are often only known from either isolated shell or cranial material. A revised phylogenetic analysis confirms the position of Saxochelys gilberti as a derived baenid (Eubaeninae) more closely related to Baena arenosa than to Eubaena cephalica. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-023-00301-6.

3.
Front Plant Sci ; 13: 894690, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783978

RESUMO

The Chicxulub bolide impact has been linked to a mass extinction of plants at the Cretaceous-Paleogene boundary (KPB; ∼66 Ma), but how this extinction affected plant ecological strategies remains understudied. Previous work in the Williston Basin, North Dakota, indicates that plants pursuing strategies with a slow return-on-investment of nutrients abruptly vanished after the KPB, consistent with a hypothesis of selection against evergreen species during the globally cold and dark impact winter that followed the bolide impact. To test whether this was a widespread pattern we studied 1,303 fossil leaves from KPB-spanning sediments in the Denver Basin, Colorado. We used the relationship between petiole width and leaf mass to estimate leaf dry mass per area (LMA), a leaf functional trait negatively correlated with rate of return-on-investment. We found no evidence for a shift in this leaf-economic trait across the KPB: LMA remained consistent in both its median and overall distribution from approximately 67 to 65 Ma. However, we did find spatio-temporal patterns in LMA, where fossil localities with low LMA occurred more frequently near the western margin of the basin. These western margin localities are proximal to the Colorado Front Range of the Rocky Mountains, where an orographically driven high precipitation regime is thought to have developed during the early Paleocene. Among these western Denver Basin localities, LMA and estimated mean annual precipitation were inversely correlated, a pattern consistent with observations of both fossil and extant plants. In the Denver Basin, local environmental conditions over time appeared to play a larger role in determining viable leaf-economic strategies than any potential global signal associated with the Chicxulub bolide impact.

4.
Biol Lett ; 18(6): 20220118, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35702983

RESUMO

The Cretaceous-Palaeogene (K-Pg) mass extinction was responsible for the destruction of global ecosystems and loss of approximately three-quarters of species diversity 66 million years ago. Large-bodied land vertebrates suffered high extinction rates, whereas small-bodied vertebrates living in freshwater ecosystems were buffered from the worst effects. Here, we report a new species of large-bodied (1.4-1.5 m) gar based on a complete skeleton from the Williston Basin of North America. The new species was recovered 18 cm above the K-Pg boundary, making it one of the oldest articulated vertebrate fossils from the Cenozoic. The presence of this freshwater macropredator approximately 1.5-2.5 thousand years after the asteroid impact suggests the rapid recovery and reassembly of North American freshwater food webs and ecosystems after the mass extinction.


Assuntos
Ecossistema , Extinção Biológica , Animais , Evolução Biológica , Fósseis , Água Doce , Planetas Menores
5.
Science ; 376(6588): 80-85, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35357913

RESUMO

Mammals are the most encephalized vertebrates, with the largest brains relative to body size. Placental mammals have particularly enlarged brains, with expanded neocortices for sensory integration, the origins of which are unclear. We used computed tomography scans of newly discovered Paleocene fossils to show that contrary to the convention that mammal brains have steadily enlarged over time, early placentals initially decreased their relative brain sizes because body mass increased at a faster rate. Later in the Eocene, multiple crown lineages independently acquired highly encephalized brains through marked growth in sensory regions. We argue that the placental radiation initially emphasized increases in body size as extinction survivors filled vacant niches. Brains eventually became larger as ecosystems saturated and competition intensified.


Assuntos
Encéfalo , Eutérios , Extinção Biológica , Animais , Tamanho Corporal , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Eutérios/anatomia & histologia , Eutérios/classificação , Eutérios/crescimento & desenvolvimento , Feminino , Fósseis , Tamanho do Órgão , Filogenia
6.
J Mamm Evol ; 28(4): 1083-1143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924738

RESUMO

Taeniolabis taoensis is an iconic multituberculate mammal of early Paleocene (Puercan 3) age from the Western Interior of North America. Here we report the discovery of significant new skull material (one nearly complete cranium, two partial crania, one nearly complete dentary) of T. taoensis in phosphatic concretions from the Corral Bluffs study area, Denver Formation (Danian portion), Denver Basin, Colorado. The new skull material provides the first record of the species from the Denver Basin, where the lowest in situ specimen occurs in river channel deposits ~730,000 years after the Cretaceous-Paleogene boundary, roughly coincident with the first appearance of legumes in the basin. The new material, in combination with several previously described and undescribed specimens from the Nacimiento Formation of the San Juan Basin, New Mexico, is the subject of detailed anatomical study, aided by micro-computed tomography. Our analyses reveal many previously unknown aspects of skull anatomy. Several regions (e.g., anterior portions of premaxilla, orbit, cranial roof, occiput) preserved in the Corral Bluffs specimens allow considerable revision of previous reconstructions of the external cranial morphology of T. taoensis. Similarly, anatomical details of the ascending process of the dentary are altered in light of the new material. Although details of internal cranial anatomy (e.g., nasal and endocranial cavities) are difficult to discern in the available specimens, we provide, based on UCMP 98083 and DMNH.EPV 95284, the best evidence to date for inner ear structure in a taeniolabidoid multituberculate. The cochlear canal of T. taoensis is elongate and gently curved and the vestibule is enlarged, although to a lesser degree than in Lambdopsalis.

7.
R Soc Open Sci ; 8(5): 210098, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34035950

RESUMO

The Maevarano Formation in northwestern Madagascar has yielded a series of exceptional fossils over the course of the last three decades that provide important insights into the evolution of insular ecosystems during the latest Cretaceous (Maastrichtian). We here describe a new genus and species of pelomedusoid turtle from this formation, Sahonachelys mailakavava, based on a nearly complete skeleton. A phylogenetic analysis suggests close affinities of Sahonachelys mailakavava with the coeval Madagascan Sokatra antitra. These two taxa are the only known representatives of the newly recognized clade Sahonachelyidae, which is sister to the speciose clade formed by Bothremydidae and Podocnemidoidae. A close relationship with coeval Indian turtles of the clade Kurmademydini is notably absent. A functional assessment suggests that Sahonachelys mailakavava was a specialized suction feeder that preyed upon small-bodied invertebrates and vertebrates. This is a unique feeding strategy among crown pelomedusoids that is convergent upon that documented in numerous other clades of turtles and that highlights the distinct evolutionary pathways taken by Madagascan vertebrates.

8.
Curr Biol ; 28(11): 1825-1831.e2, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29804807

RESUMO

The fossil record and recent molecular phylogenies support an extraordinary early-Cenozoic radiation of crown birds (Neornithes) after the Cretaceous-Paleogene (K-Pg) mass extinction [1-3]. However, questions remain regarding the mechanisms underlying the survival of the deepest lineages within crown birds across the K-Pg boundary, particularly since this global catastrophe eliminated even the closest stem-group relatives of Neornithes [4]. Here, ancestral state reconstructions of neornithine ecology reveal a strong bias toward taxa exhibiting predominantly non-arboreal lifestyles across the K-Pg, with multiple convergent transitions toward predominantly arboreal ecologies later in the Paleocene and Eocene. By contrast, ecomorphological inferences indicate predominantly arboreal lifestyles among enantiornithines, the most diverse and widespread Mesozoic avialans [5-7]. Global paleobotanical and palynological data show that the K-Pg Chicxulub impact triggered widespread destruction of forests [8, 9]. We suggest that ecological filtering due to the temporary loss of significant plant cover across the K-Pg boundary selected against any flying dinosaurs (Avialae [10]) committed to arboreal ecologies, resulting in a predominantly non-arboreal post-extinction neornithine avifauna composed of total-clade Palaeognathae, Galloanserae, and terrestrial total-clade Neoaves that rapidly diversified into the broad range of avian ecologies familiar today. The explanation proposed here provides a unifying hypothesis for the K-Pg-associated mass extinction of arboreal stem birds, as well as for the post-K-Pg radiation of arboreal crown birds. It also provides a baseline hypothesis to be further refined pending the discovery of additional neornithine fossils from the Latest Cretaceous and earliest Paleogene.


Assuntos
Biodiversidade , Evolução Biológica , Aves , Extinção Biológica , Florestas , Animais , Árvores
9.
PeerJ ; 5: e4169, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259848

RESUMO

BACKGROUND: Helopanoplia distincta is an extinct soft-shelled turtle (Pan-Trionychidae) for which the type specimen is a fragmentary costal and the inguinal notch portion of the left hypoplastron from the Late Cretaceous (Maastrichtian) Lance Formation of Wyoming, USA that bear a distinct surface sculpture pattern consisting of raised tubercles. Over the course of the past few decades, a number of additional, fragmentary specimens from the Late Cretaceous (Maastrichtian) Hell Creek Formation of Montana and North Dakota have been referred to this taxon based on the presence of these tubercles, but a more complete understanding of the anatomy and phylogenetic relationships of this distinctive soft-shelled turtle is still outstanding. METHODS: We here figure and describe shell remains of eight fossils referable to Helopanoplia distincta from the Hell Creek Formation of Montana and North Dakota that, in combination, document nearly all aspects of the shell morphology of this taxon. We furthermore explore the relationships of this fossil turtle by inserting it into a modified phylogenetic analysis of pan-trionychid relationships. RESULTS: The new fossil material thoroughly supports the validity of Helopanoplia distincta. In addition to its unique surface sculpture pattern, this turtle can be diagnosed relative to all other named pan-trionychids by the presence of a distinct corner along the margin of costals II, the complete covering of costal ribs I-VI by metaplastic bone, midline contact of the main plastral elements, hyoplastral shoulder, presence of a lateral, upturned margin on the hyo/hypoplastron that is covered dorsally and laterally by sculptured metaplastic bone, a single, lateral hyoplastral process, and the apomorphic presence of fine scallops along the margin of costals VIII, formation of a laterally embraced, rounded nuchal, anteriorly rounded costals I, distally expanded costals II, and narrow costals VII. A phylogenetic analysis places Helopanoplia distincta as sister to the clade formed by Plastomenus thomasii and Hutchemys spp., thereby confirming its identity as a plastomenid. The vast majority of Helopanoplia distincta material has been recovered from fine-grained overbank deposits, thereby supporting the hypothesis that this turtle favored ponded waters.

10.
PeerJ ; 4: e2502, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27703852

RESUMO

BACKGROUND: Bothremydidae is a clade of extinct pleurodiran turtles known from the Cretaceous to Paleogene of Africa, Europe, India, Madagascar, and North and South America. The group is most diverse during the Late Cretaceous to Paleogene of Africa. Little is known, however, about the early evolution of the group. METHODS: We here figure and describe a fossil turtle from early Late Cretaceous deposits exposed at MacFarlane Mine in Cedar Canyon, southwestern Utah, USA. The sediments associated with the new turtle are utilized to infer its stratigraphic provenience and the depositional settings in which it was deposited. The fossil is compared to previously described fossil pleurodires, integrated into a modified phylogenetic analysis of pelomedusoid turtles, and the biogeography of bothremydid turtles is reassessed. In light of the novel phylogenetic hypotheses, six previously established taxon names are converted to phylogenetically defined clade names to aid communication. RESULTS: The new fossil turtle can be inferred with confidence to have originated from a brackish water facies within the late Cenomanian Culver Coal Zone of the Naturita Formation. The fossil can be distinguished from all other previously described pleurodires and is therefore designated as a new taxon, Paiutemys tibert gen. et. sp. nov. Phylogenetic analysis places the new taxon as sister to the European Polysternon provinciale, Foxemys trabanti and Foxemys mechinorum at the base of Bothremydinae. Biogeographic analysis suggests that bothremydids originated as continental turtles in Gondwana, but that bothremydines adapted to near-shore marine conditions and therefore should be seen as having a circum-Atlantic distribution.

11.
Curr Biol ; 26(14): 1887-94, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27426515

RESUMO

The turtle shell is a complex structure that currently serves a largely protective function in this iconically slow-moving group [1]. Developmental [2, 3] and fossil [4-7] data indicate that one of the first steps toward the shelled body plan was broadening of the ribs (approximately 50 my before the completed shell [5]). Broadened ribs alone provide little protection [8] and confer significant locomotory [9, 10] and respiratory [9, 11] costs. They increase thoracic rigidity [8], which decreases speed of locomotion due to shortened stride length [10], and they inhibit effective costal ventilation [9, 11]. New fossil material of the oldest hypothesized stem turtle, Eunotosaurus africanus [12] (260 mya) [13, 14] from the Karoo Basin of South Africa, indicates the initiation of rib broadening was an adaptive response to fossoriality. Similar to extant fossorial taxa [8], the broad ribs of Eunotosaurus provide an intrinsically stable base on which to operate a powerful forelimb digging mechanism. Numerous fossorial correlates [15-17] are expressed throughout Eunotosaurus' skeleton. Most of these features are widely distributed along the turtle stem and into the crown clade, indicating the common ancestor of Eunotosaurus and modern turtles possessed a body plan significantly influenced by digging. The adaptations related to fossoriality likely facilitated movement of stem turtles into aquatic environments early in the groups' evolutionary history, and this ecology may have played an important role in stem turtles surviving the Permian/Triassic extinction event.


Assuntos
Exoesqueleto/anatomia & histologia , Evolução Biológica , Fósseis/anatomia & histologia , Características de História de Vida , Tartarugas/anatomia & histologia , Animais , Locomoção , Filogenia , África do Sul
12.
Zoology (Jena) ; 119(6): 471-473, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27162169

RESUMO

Fossils provide a glimpse into the architecturally complex origins of modern vertebrate body plans. One such origin that has been long debated is that of turtles. Although much attention has been directed toward the origin of the shell, the enigmatic evolution of the turtle skull and its anapsid temporal region has long clouded our understanding of reptile phylogeny. Two taxa, Eunotosaurus africanus and Pappochelys rosinae, were recently and independently described as long-anticipated stem turtles whose diapsid skulls would cement the evolutionary link between turtles and other modern reptile lineages. Detailed µCT analysis of the stratigraphically older and phylogenetically stemward of the two, Eunotosaurus, provides empirical insight into changing developmental trajectories that may have produced the anapsid cranial form of modern turtles and sets the stage for more comprehensive studies of early amniote cranial evolution.


Assuntos
Evolução Biológica , Crânio/anatomia & histologia , Tartarugas/anatomia & histologia , Animais , Fósseis , Tartarugas/genética
13.
Nature ; 525(7568): 239-42, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26331544

RESUMO

Transitional fossils informing the origin of turtles are among the most sought-after discoveries in palaeontology. Despite strong genomic evidence indicating that turtles evolved from within the diapsid radiation (which includes all other living reptiles), evidence of the inferred transformation between an ancestral turtle with an open, diapsid skull to the closed, anapsid condition of modern turtles remains elusive. Here we use high-resolution computed tomography and a novel character/taxon matrix to study the skull of Eunotosaurus africanus, a 260-million-year-old fossil reptile from the Karoo Basin of South Africa, whose distinctive postcranial skeleton shares many unique features with the shelled body plan of turtles. Scepticism regarding the status of Eunotosaurus as the earliest stem turtle arises from the possibility that these shell-related features are the products of evolutionary convergence. Our phylogenetic analyses indicate strong cranial support for Eunotosaurus as a critical transitional form in turtle evolution, thus fortifying a 40-million-year extension to the turtle stem and moving the ecological context of its origin back onto land. Furthermore, we find unexpected evidence that Eunotosaurus is a diapsid reptile in the process of becoming secondarily anapsid. This is important because categorizing the skull based on the number of openings in the complex of dermal bone covering the adductor chamber has long held sway in amniote systematics, and still represents a common organizational scheme for teaching the evolutionary history of the group. These discoveries allow us to articulate a detailed and testable hypothesis of fenestral closure along the turtle stem. Our results suggest that Eunotosaurus represents a crucially important link in a chain that will eventually lead to consilience in reptile systematics, paving the way for synthetic studies of amniote evolution and development.


Assuntos
Fósseis , Filogenia , Crânio/anatomia & histologia , Tartarugas/anatomia & histologia , Animais , Modelos Biológicos , África do Sul
15.
Proc Biol Sci ; 282(1798): 20141013, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25429012

RESUMO

Calibration is the rate-determining step in every molecular clock analysis and, hence, considerable effort has been expended in the development of approaches to distinguish good from bad calibrations. These can be categorized into a priori evaluation of the intrinsic fossil evidence, and a posteriori evaluation of congruence through cross-validation. We contrasted these competing approaches and explored the impact of different interpretations of the fossil evidence upon Bayesian divergence time estimation. The results demonstrate that a posteriori approaches can lead to the selection of erroneous calibrations. Bayesian posterior estimates are also shown to be extremely sensitive to the probabilistic interpretation of temporal constraints. Furthermore, the effective time priors implemented within an analysis differ for individual calibrations when employed alone and in differing combination with others. This compromises the implicit assumption of all calibration consistency methods, that the impact of an individual calibration is the same when used alone or in unison with others. Thus, the most effective means of establishing the quality of fossil-based calibrations is through a priori evaluation of the intrinsic palaeontological, stratigraphic, geochronological and phylogenetic data. However, effort expended in establishing calibrations will not be rewarded unless they are implemented faithfully in divergence time analyses.


Assuntos
Calibragem , Evolução Molecular , Filogenia , Tartarugas/genética , Animais , Teorema de Bayes , Especiação Genética , Tartarugas/classificação , Incerteza
16.
Nat Commun ; 5: 5211, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25376734

RESUMO

The turtle body plan differs markedly from that of other vertebrates and serves as a model system for studying structural and developmental evolution. Incorporation of the ribs into the turtle shell negates the costal movements that effect lung ventilation in other air-breathing amniotes. Instead, turtles have a unique abdominal-muscle-based ventilatory apparatus whose evolutionary origins have remained mysterious. Here we show through broadly comparative anatomical and histological analyses that an early member of the turtle stem lineage has several turtle-specific ventilation characters: rigid ribcage, inferred loss of intercostal muscles and osteological correlates of the primary expiratory muscle. Our results suggest that the ventilation mechanism of turtles evolved through a division of labour between the ribs and muscles of the trunk in which the abdominal muscles took on the primary ventilatory function, whereas the broadened ribs became the primary means of stabilizing the trunk. These changes occurred approximately 50 million years before the evolution of the fully ossified shell.


Assuntos
Músculos Abdominais/anatomia & histologia , Evolução Biológica , Pulmão/anatomia & histologia , Músculos Respiratórios/anatomia & histologia , Costelas/anatomia & histologia , Tartarugas/anatomia & histologia , Músculos Abdominais/diagnóstico por imagem , Músculos Abdominais/fisiologia , Anatomia Comparada , Exoesqueleto/anatomia & histologia , Exoesqueleto/diagnóstico por imagem , Exoesqueleto/fisiologia , Animais , Feminino , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Filogenia , Ventilação Pulmonar/fisiologia , Músculos Respiratórios/diagnóstico por imagem , Músculos Respiratórios/fisiologia , Costelas/diagnóstico por imagem , Costelas/fisiologia , Tomografia Computadorizada por Raios X , Tartarugas/genética , Tartarugas/fisiologia
17.
Anat Rec (Hoboken) ; 297(11): 2148-86, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25312371

RESUMO

The nasal region plays a key role in sensory, thermal, and respiratory physiology, but exploring its evolution is hampered by a lack of preservation of soft-tissue structures in extinct vertebrates. As a test case, we investigated members of the "bony-headed" ornithischian dinosaur clade Pachycephalosauridae (particularly Stegoceras validum) because of their small body size (which mitigated allometric concerns) and their tendency to preserve nasal soft tissues within their hypermineralized skulls. Hypermineralization directly preserved portions of the olfactory turbinates along with an internal nasal ridge that we regard as potentially an osteological correlate for respiratory conchae. Fossil specimens were CT-scanned, and nasal cavities were segmented and restored. Soft-tissue reconstruction of the nasal capsule was functionally tested in a virtual environment using computational fluid dynamics by running air through multiple models differing in nasal soft-tissue conformation: a bony-bounded model (i.e., skull without soft tissue) and then models with soft tissues added, such as a paranasal septum, a scrolled concha, a branched concha, and a model combining the paranasal septum with a concha. Deviations in fluid flow in comparison to a phylogenetically constrained sample of extant diapsids were used as indicators of missing soft tissue. Models that restored aspects of airflow found in extant diapsids, such as appreciable airflow in the olfactory chamber, were judged as more likely. The model with a branched concha produced airflow patterns closest to those of extant diapsids. These results from both paleontological observation and airflow modeling indicate that S. validum and other pachycephalosaurids could have had both olfactory and respiratory conchae. Although respiratory conchae have been linked to endothermy, such conclusions require caution in that our re-evaluation of the reptilian nasal apparatus indicates that respiratory conchae may be more widespread than originally thought, and other functions, such as selective brain temperature regulation, could be important.


Assuntos
Dinossauros/anatomia & histologia , Extinção Biológica , Modelos Anatômicos , Cavidade Nasal/anatomia & histologia , Respiração , Animais , Dinossauros/fisiologia , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos
18.
Evol Dev ; 16(4): 189-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24798503

RESUMO

Understanding the phylogenetic position of crown turtles (Testudines) among amniotes has been a source of particular contention. Recent morphological analyses suggest that turtles are sister to all other reptiles, whereas the vast majority of gene sequence analyses support turtles as being inside Diapsida, and usually as sister to crown Archosauria (birds and crocodilians). Previously, a study using microRNAs (miRNAs) placed turtles inside diapsids, but as sister to lepidosaurs (lizards and Sphenodon) rather than archosaurs. Here, we test this hypothesis with an expanded miRNA presence/absence dataset, and employ more rigorous criteria for miRNA annotation. Significantly, we find no support for a turtle + lepidosaur sister-relationship; instead, we recover strong support for turtles sharing a more recent common ancestor with archosaurs. We further test this result by analyzing a super-alignment of precursor miRNA sequences for every miRNA inferred to have been present in the most recent common ancestor of tetrapods. This analysis yields a topology that is fully congruent with our presence/absence analysis; our results are therefore in accordance with most gene sequence studies, providing strong, consilient molecular evidence from diverse independent datasets regarding the phylogenetic position of turtles.


Assuntos
MicroRNAs/genética , Répteis/classificação , Répteis/genética , Animais , Aves/classificação , Aves/genética , Filogenia
19.
PLoS One ; 9(3): e92022, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24647078

RESUMO

The oviraptorosaurian theropod dinosaur clade Caenagnathidae has long been enigmatic due to the incomplete nature of nearly all described fossils. Here we describe Anzu wyliei gen. et sp. nov., a new taxon of large-bodied caenagnathid based primarily on three well-preserved partial skeletons. The specimens were recovered from the uppermost Cretaceous (upper Maastrichtian) Hell Creek Formation of North and South Dakota, and are therefore among the stratigraphically youngest known oviraptorosaurian remains. Collectively, the fossils include elements from most regions of the skeleton, providing a wealth of information on the osteology and evolutionary relationships of Caenagnathidae. Phylogenetic analysis reaffirms caenagnathid monophyly, and indicates that Anzu is most closely related to Caenagnathus collinsi, a taxon that is definitively known only from a mandible from the Campanian Dinosaur Park Formation of Alberta. The problematic oviraptorosaurs Microvenator and Gigantoraptor are recovered as basal caenagnathids, as has previously been suggested. Anzu and other caenagnathids may have favored well-watered floodplain settings over channel margins, and were probably ecological generalists that fed upon vegetation, small animals, and perhaps eggs.


Assuntos
Tamanho Corporal , Dinossauros/anatomia & histologia , Animais , Peso Corporal , Calibragem , Geografia , Mandíbula/anatomia & histologia , América do Norte , Paleontologia , Filogenia , Crânio/anatomia & histologia , Fatores de Tempo
20.
BMC Evol Biol ; 13: 266, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24314094

RESUMO

BACKGROUND: Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position. RESULTS: The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtles, including the Late Triassic (Carnian) Proganochelys quenstedti, in having a vertically oriented scapula, a large coracoid foramen, a short acromion process, and bony ridges that connect the acromion process with the dorsal process, glenoid, and coracoid, and by being able to rotate along a vertical axis. The pelvic elements are expanded distally and suturally attached to the shell, but in contrast to modern pleurodiran turtles the pelvis is associated with the sacral ribs. CONCLUSIONS: The primary homology of the character "sutured pelvis" is unproblematic between P. robusta and extant pleurodires. However, integration of all new observations into the most complete phylogenetic analysis that support the pleurodiran nature of P. robusta reveals that this taxon is more parsimoniously placed along the phylogenetic stem of crown Testudines. All current phylogenetic hypotheses therefore support the basal placement of this taxon, imply that the sutured pelvis of this taxon developed independently from that of pleurodires, and conclude that the age of the turtle crown is Middle Jurassic.


Assuntos
Evolução Biológica , Tartarugas/anatomia & histologia , Tartarugas/genética , Animais , Fósseis , Alemanha , Pelve/anatomia & histologia , Filogenia , Escápula/anatomia & histologia , Coluna Vertebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...