Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 3: 329, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22934077

RESUMO

We recently reported that the neuropathic pain medication, gabapentin (GBP; Neurontin), significantly attenuated both noxious colorectal distension (CRD)-induced autonomic dysreflexia (AD) and tail pinch-induced spasticity compared to saline-treated cohorts 2-3 weeks after complete high thoracic (T4) spinal cord injury (SCI). Here we employed long-term blood pressure telemetry to test, firstly, the efficacy of daily versus acute GBP treatment in modulating AD and tail spasticity in response to noxious stimuli at 2 and 3 weeks post-injury. Secondly, we determined whether daily GBP alters baseline cardiovascular parameters, as well as spontaneous AD events detected using a novel algorithm based on blood pressure telemetry data. At both 14 and 21 days after SCI, irrespective of daily treatment, acute GBP given 1 h prior to stimulus significantly attenuated CRD-induced AD and pinch-evoked tail spasticity; conversely, acute saline had no such effects. Moreover, daily GBP did not alter 24 h mean arterial pressure (MAP) or heart rate (HR) values compared to saline treatment, nor did it reduce the incidence of spontaneous AD events compared to saline over the three week assessment period. Power spectral density (PSD) analysis of the MAP signals demonstrated relative power losses in mid frequency ranges (0.2-0.8 Hz) for all injured animals relative to low frequency MAP power (0.02-0.08 Hz). However, there was no significant difference between groups over time post-injury; hence, GBP had no effect on the persistent loss of MAP fluctuations in the mid frequency range after injury. In summary, the mechanism(s) by which acute GBP treatment mitigate aberrant somatosensory and cardiophysiological responses to noxious stimuli after SCI remain unclear. Nevertheless, with further refinements in defining the dynamics associated with AD events, such as eliminating requisite concomitant bradycardia, the objective repeatability of automatic detection of hypertensive crises provides a potentially useful tool for assessing autonomic function pre- and post-SCI, in conjunction with experimental pharmacotherapeutics for neuropathic pain, such as GBP.

2.
Restor Neurol Neurosci ; 29(4): 275-86, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21697591

RESUMO

PURPOSE: Using the horizontal ladder task, we examined some issues that need to be resolved before task-specific rehabilitative training can be employed clinically for the frequent contusive spinal cord injury (SCI). We hypothesized that improving recovery in task performance after contusive thoracic SCI requires frequent re-training and initiating the re-training early during spontaneous recovery. METHODS: Contusive SCI was produced at the adult female Sprague Dawley rat T10 vertebra. Task re-training was initiated one week later when occasional weight-supported plantar steps were taken overground (n = 8). It consisted of 2 repetitions each day, 5 days each week, for 3 weeks. Task performance and overground locomotion were assessed weekly. Neurotransmission through the SCI ventrolateral funiculus was examined. SCI morphometry was determined. RESULTS: Re-training did not improve task performance recovery compared to untrained Controls (n = 7). Untrained overground locomotion and neurotransmission through the SCI did not change. Lesion area at the injury epicenter as a percentage of the total spinal cord area as well as total tissue, lesion, and spared tissue, white matter, or gray matter volumes did not differ. CONCLUSIONS: For the horizontal ladder task after contusive thoracic SCI, earlier re-training sessions with more repetitions and critical neural circuitry may be necessary to engender a rehabilitation effect.


Assuntos
Movimento , Plasticidade Neuronal , Desempenho Psicomotor , Traumatismos da Medula Espinal/reabilitação , Animais , Modelos Animais de Doenças , Feminino , Testes Neuropsicológicos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Vértebras Torácicas/lesões
3.
J Neurotrauma ; 27(8): 1369-78, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20528165

RESUMO

The retrograde transsynaptic tracer pseudorabies virus (PRV) has been widely used as a marker for synaptic connectivity in the spinal cord. Notably, the PRV-152 construct expresses enhanced green fluorescent protein (EGFP). We recently reported a significant attenuation of PRV-152 labeling of the intermediolateral cell column (IML) and celiac ganglia after complete T4 spinal cord transection versus sham injury in rats at 96 h after PRV-152 inoculation of the left kidney. Here we found a significant increase in noxious colorectal distention (CRD)-evoked c-Fos expression in spinal cords of injured versus sham rats without PRV infection. In order to assess whether enhancing neuronal activity in spinalized rats might increase PRV-152 labeling, we subjected awake spinalized rats to 1.5 h of intermittent noxious CRD either: (1) just prior to inoculation, or (2) 96 h after inoculation (n = 3/group). Equal numbers of spinalized rats in both groups received PRV-152 inoculations without CRD (non-stimulated; n = 3/group). At 96 h post-inoculation fixed spinal cords and left celiac ganglionic tissues were assessed for the distribution and quantification of EGFP-labeled cells. The injured cohort that received CRD just prior to PRV injection showed a significant reduction in EGFP-labeled cells in both the IML and left celiac ganglion compared to non-stimulated injured rats. In contrast, the injured cohort that received CRD 96 h after PRV-152 inoculation showed no differences in EGFP-labeled cell numbers in the IML or celiac ganglia versus non-stimulated injured rats. Interestingly, microglia near c-Fos-positive cells after acute CRD appeared more reactive compared to non-stimulated spinalized rats, and activated microglial cells markedly reduce viral transduction and progression following PRV inoculation of the CNS. Hence our results imply that increased CRD-induced c-Fos expression in the injured paradigm, prior to but not after PRV injection, further attenuates PRV-152 uptake, perhaps through changes in neuronal activity and/or innate neuro-immune responses.


Assuntos
Colo/fisiologia , Estado de Descerebração/fisiopatologia , Neurônios/patologia , Pseudorraiva/patologia , Reto/fisiologia , Sistema Nervoso Simpático/patologia , Animais , Fibras Autônomas Pré-Ganglionares/patologia , Contagem de Células , Feminino , Gânglios Simpáticos/patologia , Herpesvirus Suídeo 1/metabolismo , Imuno-Histoquímica , Microglia/patologia , Estimulação Física , Proteínas Proto-Oncogênicas c-fos/biossíntese , Ratos , Ratos Wistar , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
4.
J Neurochem ; 114(1): 291-301, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20438613

RESUMO

In the present study, we evaluated the therapeutic efficacy of acetyl-l-carnitine (ALC) administration on mitochondrial dysfunction following tenth thoracic level contusion spinal cord injury (SCI) in rats. Initial results from experiments in vitro with naïve mitochondria showed that, in the absence of pyruvate, ALC can be used as an alternative substrate for mitochondrial respiration. Additionally, when added in vitro to mitochondria isolated from 24 h injured cords, ALC restored respiration rates to normal levels. For administration studies in vivo, injured rats were given i.p. injections of saline (vehicle) or ALC (300 mg/kg) at 15, 30 or 60 min post-injury, followed by one booster after 6 h. Mitochondria were isolated 24 h post-injury and assessed for respiration rates, activities of NADH dehydrogenase, cytochrome c oxidase and pyruvate dehydrogenase. SCI significantly (p < 0.05) decreased respiration rates and activities of all enzyme complexes, but ALC treatment significantly (p < 0.05) maintained mitochondrial respiration and enzyme activities compared with vehicle treatment. Critically, ALC administration in vivo at 15 min and 6 h post-injury versus vehicle, followed once daily for 7 days, significantly (p < 0.05) spared gray matter. In summary, ALC treatment maintains mitochondrial bioenergetics following contusion SCI and, thus, holds great potential as a neuroprotective therapy for acute SCI.


Assuntos
Acetilcarnitina/farmacologia , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Acetilcarnitina/uso terapêutico , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Feminino , Técnicas In Vitro , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
5.
J Comp Neurol ; 509(4): 382-99, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18512692

RESUMO

Complete thoracic (T) spinal cord injury (SCI) above the T6 level typically results in autonomic dysreflexia, an abnormal hypertensive condition commonly triggered by nociceptive stimuli below the level of SCI. Overexpression of nerve growth factor in the lumbosacral spinal cord induces profuse sprouting of nociceptive pelvic visceral afferent fibers that correlates with increased hypertension in response to noxious colorectal distension. After complete T4 SCI, we evaluated the plasticity of propriospinal neurons conveying visceral input rostrally to thoracic sympathetic preganglionic neurons. The anterograde tracer biotinylated dextran amine (BDA) was injected into the lumbosacral dorsal gray commissure (DGC) of injured/nontransected rats immediately after injury (acute) or 2 weeks later (delayed). At 1 or 2 weeks after delayed or acute injections, respectively, a higher density (P < 0.05) of BDA(+) fibers was found in thoracic dorsal gray matter of injured vs. nontransected spinal cords. For corroboration, fast blue (FB) or cholera toxin subunit beta (CTb) was injected into the T9 dorsal horns 2 weeks postinjury/nontransection. After 1 week transport, more retrogradely labeled (P < 0.05) DGC propriospinal neurons (T13-S1) were quantified in injured vs. nontransected cords. We also monitored immediate early gene c-fos expression following colorectal distension and found increased (P < 0.01) c-Fos(+) cell numbers throughout the DGC after injury. Collectively, these results imply that, in conjunction with local primary afferent fiber plasticity, injury-induced sprouting of DGC neurons may be a key constituent in relaying visceral sensory input to sympathetic preganglionic neurons that elicit autonomic dysreflexia after high thoracic SCI.


Assuntos
Disreflexia Autonômica/fisiopatologia , Região Lombossacral/fisiopatologia , Plasticidade Neuronal , Neurônios/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiopatologia , Vias Aferentes/fisiologia , Animais , Anticorpos , Disreflexia Autonômica/etiologia , Biotina/análogos & derivados , Biotina/farmacologia , Colina O-Acetiltransferase/metabolismo , Dextranos/farmacologia , Modelos Animais de Doenças , Encefalinas/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Fibras Nervosas/fisiologia , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...