Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 643: 124-136, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37058888

RESUMO

Metal organic frameworks hold great promise as heterogeneous catalysts in sulfate radical (SO4∙-) based advanced oxidation. However, the aggregation of powdered MOF crystals and the complicated recovery procedure largely hinder their large-scale practical applications. It is important to develop eco-friendly and adaptable substrate-immobilized metal organic frameworks. Based on the hierarchical pore structure of the rattan, gravity-driven metal organic frameworks loaded rattan-based catalytic filter was designed to degrade organic pollutants by activating PMS at high liquid fluxes. Inspired by the water transportation of rattan, ZIF-67 was in-situ grown uniformly on the rattan channels inner surface using the continuous flow method. The intrinsically aligned microchannels in the vascular bundles of rattan acted as reaction compartments for the immobilization and stabilization of ZIF-67. Furthermore, the rattan-based catalytic filter exhibited excellent gravity-driven catalytic activity (up to 100 % treatment efficiency for a water flux of 10173.6 L·m-2·h-1), recyclability, and stability of organic pollutant degradation. After ten cycles, the TOC removal of ZIF-67@rattan was 69.34 %, maintaining a stable mineralisation capacity for pollutants. The inhibitory effect of the micro-channel promoted the interaction between active groups and contaminants, increasing the degradation efficiency and improving the stability of the composite. The design of a gravity-driven rattan-based catalytic filter for wastewater treatment provides an effective strategy for developing renewable and continuous catalytic systems.

2.
Front Plant Sci ; 12: 679230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154167

RESUMO

Unraveling the impact of lignin reduction on cell wall construction of poplar stems is important for accurate understanding the regulatory role of biosynthetic genes. However, few cell-level studies have been conducted on the changes in lignin, other important cell wall composition, and the structural properties of transgenic poplar stems at different developmental stages. In this work, the content and microdistributions of cell wall composition as well as the morphological characteristics of cells were studied for p-hydroxycinnamoyl-coenzyme A:quinate/shikimate p-hydroxycinnamoyltransferase (HCT) downregulated transgenic poplar 84K (Populus alba × P. glandulosa cl. '84k') at different developmental stages. Results show that the lignin contents of the upper, middle, and basal parts of HCT transgenic poplar stems were significantly decreased by 10.84, 7.40, and 7.75%, respectively; and the cellulose contents increased by 8.20, 6.45, and 3.31%, respectively, compared with the control group. The cellulose/lignin ratio of HCT transgenic poplars was therefore increased, especially in the upper sections, where it was 23.2% higher. Raman results indicate the appearance of p-hydroxyphenyl units (H) and a decrease in the ratio of syringyl/guaiacyl (S/G) lignin monomers in fiber cell walls of HCT transgenic poplars. In addition, microstructure observations revealed that the fiber and vessel cells of the HCT transgenic poplars exhibited thin cell walls and large lumen diameters. Compared with the control group, the cell wall thickness of fiber and vessel cells decreased by 6.50 and 10.93% on average, respectively. There was a 13.6% decrease in the average ratio of the cell wall thickness to the lumen diameter and an increase in fiber length and width of 5.60 and 6.11%, respectively. In addition, downregulation of HCT did not change the orientation of cellulosic microfibrils, but it led to an 11.1% increase of the cellulose crystallinity in cell walls compared to the control poplars. The information obtained herein could lead to a better understanding of the effects of genetic modifications on wood cell walls.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...