Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 11(1): 91, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410451

RESUMO

Broadband photodetection (PD) covering the deep ultraviolet to near-infrared (200-1000 nm) range is significant and desirable for various optoelectronic designs. Herein, we employ ultraviolet (UV) luminescent concentrators (LC), iodine-based perovskite quantum dots (PQDs), and organic bulk heterojunction (BHJ) as the UV, visible, and near-infrared (NIR) photosensitive layers, respectively, to construct a broadband heterojunction PD. Firstly, experimental and theoretical results reveal that optoelectronic properties and stability of CsPbI3 PQDs are significantly improved through Er3+ doping, owing to the reduced defect density, improved charge mobility, increased formation energy, tolerance factor, etc. The narrow bandgap of CsPbI3:Er3+ PQDs serves as a visible photosensitive layer of PD. Secondly, considering the matchable energy bandgap, the BHJ (BTP-4Cl: PBDB-TF) is selected as to NIR absorption layer to fabricate the hybrid structure with CsPbI3:Er3+ PQDs. Thirdly, UV LC converts the UV light (200-400 nm) to visible light (400-700 nm), which is further absorbed by CsPbI3:Er3+ PQDs. In contrast with other perovskites PDs and commercial Si PDs, our PD presents a relatively wide response range and high detectivity especially in UV and NIR regions (two orders of magnitude increase that of commercial Si PDs). Furthermore, the PD also demonstrates significantly enhanced air- and UV- stability, and the photocurrent of the device maintains 81.5% of the original one after 5000 cycles. This work highlights a new attempt for designing broadband PDs, which has application potential in optoelectronic devices.

2.
Nanoscale ; 13(39): 16598-16607, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34585206

RESUMO

Lead halide perovskite quantum dots (PQDs) show great prospects in the field of optoelectronic applications. Although having high efficiency and narrow-band emission performance in the visible light region, the infrared multicolor luminescence performance of perovskite nanocrystals is still highly desired. In this work, in order to increase the luminescence intensity and extend the infrared multicolor luminescence, transition metal and rare earth ions are co-doped into PQDs. Herein, PQDs emitting at 1300 nm are realized by Pr3+ doping, which has not been reported in previous literature. The luminescence and kinetic process of Ni2+ and Pr3+ co-doped CsPbCl3 PQDs are studied, which exhibit considerably enhanced emission intensity at 400 nm and 1300 nm, with an overall quantum efficiency of photoluminescence (PLQY) of 89% and the highest infrared PLQY of 23%.

3.
ACS Appl Mater Interfaces ; 9(36): 30510-30518, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28829566

RESUMO

Artificial fractal structures have attracted considerable scientific interest in circulating tumor cells (CTCs) detection and capture, which plays a pivotal role in the diagnosis and prognosis of cancer. Herein, we designed a bionic TiO2 inverse opal photonic crystal (IOPC) structure for highly efficient immunocapture of CTCs by combination of a magnetic Fe3O4@C6@silane nanoparticles with anti-EpCAM (antiepithelial cell adhesion molecule) and microchannel structure. Porous structure and dimension of IOPC TiO2 can be precisely controlled for mimicking cellular components, and anti-EpCAM antibody was further modified on IOPC interface by conjugating with polydopamine (PDA). The improvement of CTCs capture efficiency reaches a surprising factor of 20 for the IOPC interface compared to that on flat glass, suggesting that the IOPCs are responsible for the dramatic enhancement of the capture efficiency of MCF-7 cells. IOPC substrate with pore size of 415 nm leads to the optimal CTCs capture efficiency of 92% with 1 mL/h. Besides the cell affinity, IOPCs also have the advantage of light scattering property which can enhance the excitation and emission light of fluorescence labels, facilitating the real-time monitoring of CTCs capture. The IOPC-based platform demonstrates excellent performance in CTCs capture, which will take an important step toward specific recognition of disease-related rare cells.


Assuntos
Células Neoplásicas Circulantes , Moléculas de Adesão Celular , Humanos , Células MCF-7 , Nanopartículas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...