Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 12(42): 10410-10416, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34672575

RESUMO

Clathrate hydrates can store a high density of guest molecules in cages. However, as a gas-storage material, the controllable release of guests therefrom is still challenging. Here we report on the utilization of an electric field as a control agent. Attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) is used to investigate the release of tetrahydrofuran (THF) from the clathrate in the electrochemical double layer (EDL). When voltage is applied, the ATR-SEIRA signal from encaged THF rapidly decreases, and the water characteristic O-H absorption peak exhibits an appreciable blue-shift. Our measurements indicate a transformation of the hydrate lattice to a less H-bonded configuration at the electrode surface. In combination with previous experimental results on the orientation of water molecules in the EDL, we propose that the strong electric field in the EDL aligns the water molecules of the clathrate and distorts the hydrate lattice structure enough to release the trapped guest molecules.

2.
J Am Chem Soc ; 137(47): 15043-8, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26535800

RESUMO

Fabricating a flexible room-temperature ferromagnetic resistive-switching random access memory (RRAM) device is of fundamental importance to integrate nonvolatile memory and spintronics both in theory and practice for modern information technology and has the potential to bring about revolutionary new foldable information-storage devices. Here, we show that a relatively low operating voltage (+1.4 V/-1.5 V, the corresponding electric field is around 20,000 V/cm) drives the dual vacancies evolution in ultrathin SnO2 nanosheets at room temperature, which causes the reversible transition between semiconductor and half-metal, accompanyied by an abrupt conductivity change up to 10(3) times, exhibiting room-temperature ferromagnetism in two resistance states. Positron annihilation spectroscopy and electron spin resonance results show that the Sn/O dual vacancies in the ultrathin SnO2 nanosheets evolve to isolated Sn vacancy under electric field, accounting for the switching behavior of SnO2 ultrathin nanosheets; on the other hand, the different defect types correspond to different conduction natures, realizing the transition between semiconductor and half-metal. Our result represents a crucial step to create new a information-storage device realizing the reversible transition between semiconductor and half-metal with flexibility and room-temperature ferromagnetism at low energy consumption. The as-obtained half-metal in the low-resistance state broadens the application of the device in spintronics and the semiconductor to half-metal transition on the basis of defects evolution and also opens up a new avenue for exploring random access memory mechanisms and finding new half-metals for spintronics.

3.
Angew Chem Int Ed Engl ; 54(38): 11231-5, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26235387

RESUMO

Development of efficient and affordable electrocatalysts in neutral solutions is paramount importance for the renewable energy. Herein, we report that the oxygen evolution reaction (OER) performance of Co3 S4 under neutral conditions can be enhanced by exposed octahedral planes and self-adapted spin states in atomically thin nanosheets. A HAADF image clearly confirmed that the active octahedra with Jahn-Teller distortions were exposed exclusively. Most importantly, in the atomically thin nanosheets, the spin states of Co(3+) in the octahedral self-adapt from low-spin to high-spin states. As a result, the synergistic effect endow the Co3 S4 nanosheets with superior OER performance, with exceptional low onset overpotentials of circa 0.31 V in neutral solutions, which is state-of-the-art among inorganic non-noble metal compounds.

4.
J Am Chem Soc ; 136(44): 15670-5, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25310506

RESUMO

According to Yang Shao-Horn's principle, CoSe2 is a promising candidate as an efficient, affordable, and sustainable alternative electrocatalyst for the oxygen evolution reaction, owing to its well-suited electronic configuration of Co ions. However, the catalytic efficiency of pure CoSe2 is still far below what is expected, because of its poor active site exposure yield. Herein, we successfully overcome the disadvantage of insufficient active sites in bulk CoSe2 by reducing its thickness into the atomic scale rather than any additional modification (such as doping or hybridizing with graphene or noble metals). The positron annihilation spectrometry and XAFS spectra provide clear evidence that a large number of VCo″ vacancies formed in the ultrathin nanosheets. The first-principles calculations reveal that these VCo″ vacancies can serve as active sites to efficiently catalyze the oxygen evolution reaction, manifesting an OER overpotential as low as 0.32 V at 10 mA cm(-2) in pH 13 medium, which is superior to the values for its bulk counterparts as well as those for the most reported Co-based electrocatalysts. Considering the outstanding performance of the simple, unmodified ultrathin CoSe2 nanosheets as the only catalyst, further improvement of the catalytic activity is expected when various strategies of doping or hybridizing are used. These results not only demonstrate the potential of a notable, affordable, and earth-abundant water oxidation electrocatalyst based on ultrathin CoSe2 nanosheets but also open up a promising avenue into the exploration of excellent active and durable catalysts toward replacing noble metals for oxygen electrocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...