Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 618, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853336

RESUMO

BACKGROUND: Extravillous trophoblast cell (EVT) differentiation and its communication with maternal decidua especially the leading immune cell type natural killer (NK) cell are critical events for placentation. However, appropriate in vitro modelling system and regulatory programs of these two events are still lacking. Recent trophoblast organoid (TO) has advanced the molecular and mechanistic research in placentation. Here, we firstly generated the self-renewing TO from human placental villous and differentiated it into EVTs (EVT-TO) for investigating the differentiation events. We then co-cultured EVT-TO with freshly isolated decidual NKs for further study of cell communication. TO modelling of EVT differentiation as well as EVT interaction with dNK might cast new aspect for placentation research. RESULTS: Single-cell RNA sequencing (scRNA-seq) was applied for comprehensive characterization and molecular exploration of TOs modelling of EVT differentiation and interaction with dNKs. Multiple distinct trophoblast states and dNK subpopulations were identified, representing CTB, STB, EVT, dNK1/2/3 and dNKp. Lineage trajectory and Seurat mapping analysis identified the close resemblance of TO and EVT-TO with the human placenta characteristic. Transcription factors regulatory network analysis revealed the cell-type specific essential TFs for controlling EVT differentiation. CellphoneDB analysis predicted the ligand-receptor complexes in dNK-EVT-TO co-cultures, which relate to cytokines, immunomodulation and angiogenesis. EVT was known to affect the immune properties of dNK. Our study found out that on the other way around, dNKs could exert effects on EVT causing expression changes which are functionally important. CONCLUSION: Our study documented a single-cell atlas for TO and its applications on EVT differentiation and communications with dNKs, and thus provide methodology and novel research cues for future study of human placentation.


Assuntos
Placenta , Trofoblastos , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Decídua/metabolismo , Diferenciação Celular , Organoides , Células Matadoras Naturais/metabolismo , Movimento Celular
2.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175545

RESUMO

Epididymitis is an epididymal inflammation that may lead to male infertility. Dendritic cells (DCs) and myeloid differentiation primary response gene 88 (Myd88) were associated with epididymitis in rodents. However, the functions of Myd88 on epididymal DCs remain unclear. This study investigated the role of Myd88 in DCs for epididymitis. The Myd88 signaling pathway, phenotypes of DC subsets, and cytokines were investigated in lipopolysaccharide (LPS)-induced epididymitis in mice. CRISPR-Cas9 was used to knockout Myd88 in bone-marrow-derived dendritic cells (BMDCs) and immortalized mouse epididymal (DC2) cell line. In the vivo experiments, levels of the proinflammatory cytokines IL-1α, IL-6, IL-17A, TNF-α, IL-1ß, MCP-1, and GM-CSF, mRNA for MyD88 related genes, and the percentages of monocyte-derived DCs (Mo-DCs) were significantly elevated in mice with epididymitis. In the vitro experiments, LPS significantly promoted the apoptosis of BMDCs. In addition, the concentration of inflammatory cytokines in BMDCs and DC2s were increased in the LPS group, while decreasing after the knockout of Myd88. These findings indicate that Myd88 on DCs is involved in the inflammation of epididymitis in mice, which may be a potential target for better strategies regarding the treatment of immunological male infertility.


Assuntos
Epididimite , Humanos , Masculino , Animais , Camundongos , Epididimite/metabolismo , Lipopolissacarídeos/farmacologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Medula Óssea/metabolismo , Células Dendríticas , Transdução de Sinais , Citocinas/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743056

RESUMO

A growing body of evidence in humans and animal models indicates an association between intervertebral disc degeneration (IDD) and increased fibrotic elements in the nucleus pulposus (NP). These include enhanced matrix turnover along with the abnormal deposition of collagens and other fibrous matrices, the emergence of fibrosis effector cells, such as macrophages and active fibroblasts, and the upregulation of the fibroinflammatory factors TGF-ß1 and IL-1/-13. Studies have suggested a role for NP cells in fibroblastic differentiation through the TGF-ßR1-Smad2/3 pathway, inflammatory activation and mechanosensing machineries. Moreover, NP fibrosis is linked to abnormal MMP activity, consistent with the role of matrix proteases in regulating tissue fibrosis. MMP-2 and MMP-12 are the two main profibrogenic markers of myofibroblastic NP cells. This review revisits studies in the literature relevant to NP fibrosis in an attempt to stratify its biochemical features and the molecular identity of fibroblastic cells in the context of IDD. Given the role of fibrosis in tissue healing and diseases, the perspective may provide new insights into the pathomechanism of IDD and its management.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Diferenciação Celular , Fibroblastos/metabolismo , Fibrose , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/patologia
4.
Sci Rep ; 12(1): 1083, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058478

RESUMO

Defective biosynthesis or function of proteoglycans causes pathological conditions in a variety of tissue systems. Osteoarthritis (OA) is a prevalent degenerative joint disorder characterized by progressive cartilage destruction caused by imbalanced proteoglycan synthesis and degradation. Identifying agents that regulate proteoglycan metabolism may benefit the development of OA-modifying therapeutics. High-throughput screening (HTS) of chemical libraries has paved the way for achieving this goal. However, the implementation and adaptation of HTS assays based on proteoglycan measurement remain underexploited. Using primary porcine chondrocytes as a model, we report a miniaturized dimethyl-methylene blue (DMMB) assay, which is commonly used to quantitatively evaluate sulfated glycosaminoglycan (GAG) content, with an optimized detection range and reproducibility and its integration with HTS. Treatment with TGF-ß1 and IL1-α, known as positive and negative proteoglycan regulators, respectively, supported the assay specificity. A pre-test of chemical screening of 960 compounds identified both stimulators (4.48%) and inhibitors (6.04%) of GAG production. Fluorophore-assisted carbohydrate electrophoresis validated the activity of selected hits on chondroitin sulfate expression in an alginate culture system. Our findings support the implementation of this simple colorimetric assay in HTS to discover modifiers of OA or other diseases related to dysregulated proteoglycan metabolism.


Assuntos
Condrócitos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Proteoglicanas/metabolismo , Animais , Células Cultivadas , Condrócitos/metabolismo , Sulfatos de Condroitina/metabolismo , Glicosaminoglicanos/análise , Ensaios de Triagem em Larga Escala/métodos , Azul de Metileno/análogos & derivados , Azul de Metileno/química , Osteoartrite/metabolismo , Reprodutibilidade dos Testes , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...