Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 3(8): 100349, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37601968

RESUMO

Meiotic crossovers are required for accurate chromosome segregation and producing new allelic combinations. Meiotic crossover numbers are tightly regulated within a narrow range, despite an excess of initiating DNA double-strand breaks. Here, we reveal the tumor suppressor FANCM as a meiotic anti-crossover factor in mammals. We use unique large-scale crossover analyses with both single-gamete sequencing and pedigree-based bulk-sequencing datasets to identify a genome-wide increase in crossover frequencies in Fancm-deficient mice. Gametogenesis is heavily perturbed in Fancm loss-of-function mice, which is consistent with the reproductive defects reported in humans with biallelic FANCM mutations. A portion of the gametogenesis defects can be attributed to the cGAS-STING pathway after birth. Despite the gametogenesis phenotypes in Fancm mutants, both sexes are capable of producing offspring. We propose that the anti-crossover function and role in gametogenesis of Fancm are separable and will inform diagnostic pathways for human genomic instability disorders.

2.
Clin Epigenetics ; 15(1): 73, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120619

RESUMO

BACKGROUND: Epigenetic silencing of tumor suppressor genes (TSGs) is a key feature of oncogenesis in hepatocellular carcinoma (HCC). Liver-targeted delivery of CRISPR-activation (CRISPRa) systems makes it possible to exploit chromatin plasticity, by reprogramming transcriptional dysregulation. RESULTS: Using The Cancer Genome Atlas HCC data, we identify 12 putative TSGs with negative associations between promoter DNA methylation and transcript abundance, with limited genetic alterations. All HCC samples harbor at least one silenced TSG, suggesting that combining a specific panel of genomic targets could maximize efficacy, and potentially improve outcomes as a personalized treatment strategy for HCC patients. Unlike epigenetic modifying drugs lacking locus selectivity, CRISPRa systems enable potent and precise reactivation of at least 4 TSGs tailored to representative HCC lines. Concerted reactivation of HHIP, MT1M, PZP, and TTC36 in Hep3B cells inhibits multiple facets of HCC pathogenesis, such as cell viability, proliferation, and migration. CONCLUSIONS: By combining multiple effector domains, we demonstrate the utility of a CRISPRa toolbox of epigenetic effectors and gRNAs for patient-specific treatment of aggressive HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Metilação de DNA , Epigênese Genética , Genes Supressores de Tumor , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
3.
bioRxiv ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38168317

RESUMO

The human lung is structurally complex, with a diversity of specialized epithelial, stromal and immune cells playing specific functional roles in anatomically distinct locations, and large-scale changes in the structure and cellular makeup of this distal lung is a hallmark of pulmonary fibrosis (PF) and other progressive chronic lung diseases. Single-cell transcriptomic studies have revealed numerous disease-emergent/enriched cell types/states in PF lungs, but the spatial contexts wherein these cells contribute to disease pathogenesis has remained uncertain. Using sub-cellular resolution image-based spatial transcriptomics, we analyzed the gene expression of more than 1 million cells from 19 unique lungs. Through complementary cell-based and innovative cell-agnostic analyses, we characterized the localization of PF-emergent cell-types, established the cellular and molecular basis of classical PF histopathologic disease features, and identified a diversity of distinct molecularly-defined spatial niches in control and PF lungs. Using machine-learning and trajectory analysis methods to segment and rank airspaces on a gradient from normal to most severely remodeled, we identified a sequence of compositional and molecular changes that associate with progressive distal lung pathology, beginning with alveolar epithelial dysregulation and culminating with changes in macrophage polarization. Together, these results provide a unique, spatially-resolved characterization of the cellular and molecular programs of PF and control lungs, provide new insights into the heterogeneous pathobiology of PF, and establish analytical approaches which should be broadly applicable to other imaging-based spatial transcriptomic studies.

4.
Nucleic Acids Res ; 50(20): e118, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36107768

RESUMO

Profiling gametes of an individual enables the construction of personalised haplotypes and meiotic crossover landscapes, now achievable at larger scale than ever through the availability of high-throughput single-cell sequencing technologies. However, high-throughput single-gamete data commonly have low depth of coverage per gamete, which challenges existing gamete-based haplotype phasing methods. In addition, haplotyping a large number of single gametes from high-throughput single-cell DNA sequencing data and constructing meiotic crossover profiles using existing methods requires intensive processing. Here, we introduce efficient software tools for the essential tasks of generating personalised haplotypes and calling crossovers in gametes from single-gamete DNA sequencing data (sgcocaller), and constructing, visualising, and comparing individualised crossover landscapes from single gametes (comapr). With additional data pre-possessing, the tools can also be applied to bulk-sequenced samples. We demonstrate that sgcocaller is able to generate impeccable phasing results for high-coverage datasets, on which it is more accurate and stable than existing methods, and also performs well on low-coverage single-gamete sequencing datasets for which current methods fail. Our tools achieve highly accurate results with user-friendly installation, comprehensive documentation, efficient computation times and minimal memory usage.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Algoritmos , Células Germinativas , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Análise da Expressão Gênica de Célula Única , Software , Troca Genética
5.
Front Endocrinol (Lausanne) ; 13: 842937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370948

RESUMO

We present a case of an obese 22-year-old man with activating GCK variant who had neonatal hypoglycemia, re-emerging with hypoglycemia later in life. We investigated him for asymptomatic hypoglycemia with a family history of hypoglycemia. Genetic testing yielded a novel GCK missense class 3 variant that was subsequently found in his mother, sister and nephew and reclassified as a class 4 likely pathogenic variant. Glucokinase enables phosphorylation of glucose, the rate-limiting step of glycolysis in the liver and pancreatic ß cells. It plays a crucial role in the regulation of insulin secretion. Inactivating variants in GCK cause hyperglycemia and activating variants cause hypoglycemia. Spleen-preserving distal pancreatectomy revealed diffuse hyperplastic islets, nuclear pleomorphism and periductular islets. Glucose stimulated insulin secretion revealed increased insulin secretion in response to glucose. Cytoplasmic calcium, which triggers exocytosis of insulin-containing granules, revealed normal basal but increased glucose-stimulated level. Unbiased gene expression analysis using 10X single cell sequencing revealed upregulated INS and CKB genes and downregulated DLK1 and NPY genes in ß-cells. Further studies are required to see if alteration in expression of these genes plays a role in the metabolic and histological phenotype associated with glucokinase pathogenic variant. There were more large islets in the patient's pancreas than in control subjects but there was no difference in the proportion of ß cells in the islets. His hypoglycemia was persistent after pancreatectomy, was refractory to diazoxide and improved with pasireotide. This case highlights the variable phenotype of GCK mutations. In-depth molecular analyses in the islets have revealed possible mechanisms for hyperplastic islets and insulin hypersecretion.


Assuntos
Glucoquinase , Hipoglicemia , Adulto , Glucoquinase/genética , Glucoquinase/metabolismo , Glucose , Humanos , Hipoglicemia/genética , Insulina/metabolismo , Secreção de Insulina , Masculino
6.
Int J Obes (Lond) ; 46(3): 502-514, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34764426

RESUMO

OBJECTIVES: Lipedema, a poorly understood chronic disease of adipose hyper-deposition, is often mistaken for obesity and causes significant impairment to mobility and quality-of-life. To identify molecular mechanisms underpinning lipedema, we employed comprehensive omics-based comparative analyses of whole tissue, adipocyte precursors (adipose-derived stem cells (ADSCs)), and adipocytes from patients with or without lipedema. METHODS: We compared whole-tissues, ADSCs, and adipocytes from body mass index-matched lipedema (n = 14) and unaffected (n = 10) patients using comprehensive global lipidomic and metabolomic analyses, transcriptional profiling, and functional assays. RESULTS: Transcriptional profiling revealed >4400 significant differences in lipedema tissue, with altered levels of mRNAs involved in critical signaling and cell function-regulating pathways (e.g., lipid metabolism and cell-cycle/proliferation). Functional assays showed accelerated ADSC proliferation and differentiation in lipedema. Profiling lipedema adipocytes revealed >900 changes in lipid composition and >600 differentially altered metabolites. Transcriptional profiling of lipedema ADSCs and non-lipedema ADSCs revealed significant differential expression of >3400 genes including some involved in extracellular matrix and cell-cycle/proliferation signaling pathways. One upregulated gene in lipedema ADSCs, Bub1, encodes a cell-cycle regulator, central to the kinetochore complex, which regulates several histone proteins involved in cell proliferation. Downstream signaling analysis of lipedema ADSCs demonstrated enhanced activation of histone H2A, a key cell proliferation driver and Bub1 target. Critically, hyperproliferation exhibited by lipedema ADSCs was inhibited by the small molecule Bub1 inhibitor 2OH-BNPP1 and by CRISPR/Cas9-mediated Bub1 gene depletion. CONCLUSION: We found significant differences in gene expression, and lipid and metabolite profiles, in tissue, ADSCs, and adipocytes from lipedema patients compared to non-affected controls. Functional assays demonstrated that dysregulated Bub1 signaling drives increased proliferation of lipedema ADSCs, suggesting a potential mechanism for enhanced adipogenesis in lipedema. Importantly, our characterization of signaling networks driving lipedema identifies potential molecular targets, including Bub1, for novel lipedema therapeutics.


Assuntos
Lipedema , Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo/metabolismo , Diferenciação Celular/fisiologia , Humanos , Lipedema/genética , Lipídeos
7.
Genome Biol ; 22(1): 112, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874978

RESUMO

Genetic maps have been fundamental to building our understanding of disease genetics and evolutionary processes. The gametes of an individual contain all of the information required to perform a de novo chromosome-scale assembly of an individual's genome, which historically has been performed with populations and pedigrees. Here, we discuss how single-cell gamete sequencing offers the potential to merge the advantages of short-read sequencing with the ability to build personalized genetic maps and open up an entirely new space in personalized genetics.


Assuntos
Genoma , Genômica/métodos , Células Germinativas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Medicina de Precisão/métodos , Análise de Célula Única/métodos , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Biologia Computacional/normas , Interpretação Estatística de Dados , Heterogeneidade Genética , Genômica/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Medicina de Precisão/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Célula Única/normas , Sequenciamento Completo do Genoma
8.
Nat Methods ; 17(4): 414-421, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203388

RESUMO

Bulk and single-cell DNA sequencing has enabled reconstructing clonal substructures of somatic tissues from frequency and cooccurrence patterns of somatic variants. However, approaches to characterize phenotypic variations between clones are not established. Here we present cardelino (https://github.com/single-cell-genetics/cardelino), a computational method for inferring the clonal tree configuration and the clone of origin of individual cells assayed using single-cell RNA-seq (scRNA-seq). Cardelino flexibly integrates information from imperfect clonal trees inferred based on bulk exome-seq data, and sparse variant alleles expressed in scRNA-seq data. We apply cardelino to a published cancer dataset and to newly generated matched scRNA-seq and exome-seq data from 32 human dermal fibroblast lines, identifying hundreds of differentially expressed genes between cells from different somatic clones. These genes are frequently enriched for cell cycle and proliferation pathways, indicating a role for cell division genes in somatic evolution in healthy skin.


Assuntos
Fibroblastos/metabolismo , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Software , Algoritmos , Ciclo Celular , Proliferação de Células , Humanos , Melanoma , Mutação , Transcriptoma
9.
F1000Res ; 8: 776, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31723419

RESUMO

Advances in RNA sequencing (RNA-seq) technologies that measure the transcriptome of biological samples have revolutionised our ability to understand transcriptional regulatory programs that underpin diseases such as cancer. We recently published singscore - a single sample, rank-based gene set scoring method which quantifies how concordant the transcriptional profile of individual samples are relative to specific gene sets of interest. Here we demonstrate the application of singscore to investigate transcriptional profiles associated with specific mutations or genetic lesions in acute myeloid leukemia. Using matched genomic and transcriptomic data available through the TCGA we show that scoring of appropriate signatures can distinguish samples with corresponding mutations, reflecting the ability of these mutations to drive aberrant transcriptional programs involved in leukemogenesis. We believe the singscore method is particularly useful for studying heterogeneity within a specific subsets of cancers, and as demonstrated, we show the ability of singscore to identify where alternative mutations appear to drive similar transcriptional programs.


Assuntos
Leucemia Mieloide Aguda , Mutação , Transcriptoma , Previsões , Genômica , Humanos , Análise de Sequência de RNA
10.
BMC Bioinformatics ; 19(1): 404, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400809

RESUMO

BACKGROUND: Gene set scoring provides a useful approach for quantifying concordance between sample transcriptomes and selected molecular signatures. Most methods use information from all samples to score an individual sample, leading to unstable scores in small data sets and introducing biases from sample composition (e.g. varying numbers of samples for different cancer subtypes). To address these issues, we have developed a truly single sample scoring method, and associated R/Bioconductor package singscore ( https://bioconductor.org/packages/singscore ). RESULTS: We use multiple cancer data sets to compare singscore against widely-used methods, including GSVA, z-score, PLAGE, and ssGSEA. Our approach does not depend upon background samples and scores are thus stable regardless of the composition and number of samples being scored. In contrast, scores obtained by GSVA, z-score, PLAGE and ssGSEA can be unstable when less data are available (NS < 25). The singscore method performs as well as the best performing methods in terms of power, recall, false positive rate and computational time, and provides consistently high and balanced performance across all these criteria. To enhance the impact and utility of our method, we have also included a set of functions implementing visual analysis and diagnostics to support the exploration of molecular phenotypes in single samples and across populations of data. CONCLUSIONS: The singscore method described here functions independent of sample composition in gene expression data and thus it provides stable scores, which are particularly useful for small data sets or data integration. Singscore performs well across all performance criteria, and includes a suite of powerful visualization functions to assist in the interpretation of results. This method performs as well as or better than other scoring approaches in terms of its power to distinguish samples with distinct biology and its ability to call true differential gene sets between two conditions. These scores can be used for dimensional reduction of transcriptomic data and the phenotypic landscapes obtained by scoring samples against multiple molecular signatures may provide insights for sample stratification.


Assuntos
Biologia Computacional/métodos , Neoplasias/genética , Neoplasias/patologia , Fenótipo , Medicina de Precisão , Transcriptoma , Perfilação da Expressão Gênica/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...