Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121801, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36122462

RESUMO

Porous membrane-based nanofiltration separation of small biomolecules is a widely used biotechnology for which size-based selectivity is a critical parameter of technological relevance. Efficient determination of size selectivity calls for an advanced detection method capable of performing sensitive, rapid, and on-membrane examination. Surface-enhanced Raman spectroscopy (SERS) is such a detection method that has been widely recognized as an ultrasensitive technique for trace-level detection with sensitivity down to the single-molecule level. In this work, we for the first time develop a double-sided hierarchical porous membrane-like plasmonic metasurface to realize high-selectivity bimolecular separation and simultaneous ultrasensitive SERS detection. This highly flexible device, consisting of subwavelength nanocone pairs surrounded by randomly orientated sub-5 nm nanogrooves, was prepared by combining customized "top-down" fabrication of conical nanopores in an ion-track registered polycarbonate membrane and self-assembly of nanogrooves on the membrane surface through physical vapor deposition. The unique tip-to-tip oriented conical nanopores in the device enables excellent size-based molecular selectivity; the hierarchical groove-pore structure supports a peculiar cascaded electromagnetic near-field enhancement mechanism, endowing the device with SERS-based molecular detection of ultrahigh sensitivity, uniformity, repeatability, and polarization independence. With such dual structural merits and performance enhancement, we demonstrate effective nanofiltration separation of small-sized adenine from big-sized ss-DNA and synergistic SERS determination of their species. We experimentally demonstrate an ultrasensitive detection of 4-mercaptopyridine down to 10 pM. Together with its unparalleled mechanical flexibility, this double-side-responsive plasmonic metasurface membrane can find great potential in real-world molecular filtration and detection under extremely complex working conditions.


Assuntos
Nanopartículas Metálicas , Nanoporos , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Nanotecnologia , DNA
2.
ACS Appl Mater Interfaces ; 13(7): 9015-9026, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33587586

RESUMO

Bioinspired nanoporous membranes show great potential in ionic separation and water filtration by offering high selectivity with less permeation resistance. However, complex processes always limit their applications. Here, we report a convenient approach to introduce ionic selective channels in a micron-thick polycarbonate membrane through swift heavy ion irradiation accompanied by UV sensitization and pulsed-electrical etching. The characteristic dimension of channels was tuned through regulating energy loss of the incident ion and UV sensitization time of the membrane, resulting in the sub-nanoporous membranes with mean channel diameter ranging from <2.4 to 9.7 Å. These membranes showed the voltage-activated ionic transport properties associated with the dehydration effect, and the corresponding I-V characteristics were related to ionic strength, solution pH, ionic type, and channel diameter. It was found that the transmembrane conduction of multivalent ions was severely suppressed compared to monovalent ions, until the size of the membrane channel was comparable to the hydrated diameter of multivalent ions. Ionic sieving experiments also demonstrated the excellent ionic valence selectivity of the membrane. Even for the membrane with a channel diameter close to 1 nm, the Li+/Mg2+ separation ratio was still as high as 40, and an even higher separation ratio was found for Li+/La3+ (>3000).

3.
Nanomaterials (Basel) ; 7(5)2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28505116

RESUMO

Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires.

4.
Nanomaterials (Basel) ; 6(12)2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28335359

RESUMO

Parallel arrays of Ni nanotubes with an external diameter of 150 nm, a wall thickness of 15 nm, and a length of 1.2 ± 0.3 µm were successfully fabricated in ion-track etched polycarbonate (PC) templates by electrochemical deposition. The morphology and crystal structure of the nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Structural analyses indicate that Ni nanotubes have a polycrystalline structure with no preferred orientation. Angle dependent hysteresis studies at room temperature carried out by using a vibrating sample magnetometer (VSM) demonstrate a transition of magnetization between the two different magnetization reversal modes: curling rotation for small angles and coherent rotation for large angles. Furthermore, temperature dependent magnetic analyses performed with a superconducting quantum interference device (SQUID) magnetometer indicate that magnetization of the nanotubes follows modified Bloch's law in the range 60-300 K, while the deviation of the experimental curve from this law below 60 K can be attributed to the finite size effects in the nanotubes. Finally, it was found that coercivity measured at different temperatures follows Kneller's law within the premises of Stoner-Wohlfarth model for ferromagnetic nanostructures.

5.
Nanoscale Res Lett ; 10(1): 481, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26659612

RESUMO

Understanding and controlling structural properties of the materials are crucial in materials research. In this paper, we report that crystallinity and crystallographic orientation of Pd nanowires can be tailored by varying the fabrication conditions during electrochemical deposition in polycarbonate ion-track templates. By changing the deposition temperature during the fabrication process, the nanowires with both single- and poly-crystallinities were obtained. The wires with preferred crystallographic orientations along [111], [100], and [110] directions were achieved via adjusting the applied voltage and temperature during electrochemical deposition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...