Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 858(Pt 1): 159767, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341852

RESUMO

Nitrogen dioxide (NO2) is a key tropospheric O3 precursor. Since 2013, efforts to decrease air pollution in China have driven substantial declines in annual NO2 concentrations, whereas ozone (O3) concentrations have increased. Based on nationwide NO2 observations and a regional air quality model (WRF-CMAQ), we analyzed trends in the diurnal difference (DD, the difference between nighttime and daytime concentrations) of NO2 concentrations across eastern China and in five national urban agglomerations (UAs) from 2014 to 2021, and explored the factors underlying such changes and the potential impacts on O3 pollution. We found that the observed DD of NO2 has increased in most cities and UAs, and that this trend can be primarily attributed to changes in anthropogenic emissions, based on comparison with DDs simulated with fixed anthropogenic emissions, which generally showed much weaker trends and little interannual variation. A sensitivity analysis using the WRF-CMAQ model was conducted to investigate the impact of a modified diurnal cycle of nitrogen oxides (NOx) emissions on O3 concentrations. The result revealed that enhancing the DD of NO2 would increase O3 concentrations in the morning and the daily maximum 8-h O3 concentrations in the cities with high NOx concentrations, as well as downwind areas of cities, indicating that greater DDs in NO2 is one of the reasons that have led to the enhanced China's O3 pollution in recent years.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Ozônio/análise , Dióxido de Nitrogênio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluição do Ar/análise , China
2.
Environ Sci Technol ; 56(22): 15356-15364, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314604

RESUMO

Ground-level ozone (O3) has been an emerging air pollution in China and interacts with fine particulate matters (PM2.5). We synthesized observations of O3 and its precursors in two summer months of 2020 at 10 sites in the Zhejiang province, East China and simulated the in situ photochemistry. O3 pollution in the northeastern Zhejiang province was more serious than that in the southwest. The site-average daytime O3 increment correlated well (R2 = 0.73) with the total reactivity of volatile organic compounds (VOCs) and carbon monoxide toward the hydroxyl radical (OH) in urban areas. Model simulation revealed that the main function of nitrogen oxides (NOx) at the rural sites where isoprene accounted for >85% of OH reactivity of VOCs was to facilitate the radical cycling. With NOx reduction from 0 to 90%, the self-reactions between peroxy radicals (Self-Rxns), a proven pathway for secondary organic aerosol formation, were intensified by up to 23-fold in a NOx-rich environment. In contrast, reducing VOCs could weaken the Self-Rxns while reducing O3 production rate and atmospheric oxidation capacity. This study observes and simulates O3 chemistry based on extensive measurements in typical Chinese cities, highlighting the necessity of reducing VOCs for co-benefit of O3 and PM2.5.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Ozônio/análise , Material Particulado , China
3.
Environ Sci Technol ; 56(20): 14326-14337, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36178303

RESUMO

As important regions of transition between land and sea, the three bay areas of Bohai Bay (BHB), Hangzhou Bay (HZB), and Pearl River Estuary (PRE) in China often suffer from severe photochemical pollution despite scarce anthropogenic emissions. To understand the causes of high ozone (O3) concentrations, the high O3 episode days associated with special synoptic systems in the three bays were identified via observations and simulated by the weather research and forecasting coupled with community multiscale air quality (WRF-CMAQ) model. It was revealed that the interaction between synoptic winds and mesoscale breezes resulted in slow wind speeds over the HZB and PRE, where air pollutants transported from upwind cities gained a long residence time and subsequently participated in intensive photochemical reactions. The net O3 production rates within the bay areas were even comparable to those in surrounding cities. This finding was also applicable to BHB but with lower net O3 production rates, while high levels of background O3 and the regional transport from farther upwind BHB partially elevated the O3 concentrations. Hence, these three bay areas served as O3 "pools" which caused the accumulation of air pollutants via atmospheric dynamics and subsequent intense photochemical reactions under certain meteorological conditions. The results may be applicable to other similar ecotones around the world.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental/métodos , Ozônio/análise
4.
Environ Pollut ; 309: 119778, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841994

RESUMO

Understanding the formation mechanisms of secondary organic aerosols (SOA) is an arduous task in atmospheric chemistry. In November 2018, a sampling campaign was conducted at an urban background site in Hong Kong for characterization of secondary air pollution. A high-resolution time-of-flight aerosol mass spectrometer was used to monitor the compositions of non-refractory submicron particulate matters (NR-PM1), and multiple online instruments provided us with comprehensive auxiliary data. Organic aerosol (OA) constituted the largest fraction (43.8%) of NR-PM1, and 86.5% of the organics was contributed by the oxygenated OA (OOA, secondary components). Formation mechanisms of a dominant and more variable component of the less-oxidized OOA (labelled as LO-OOA1 in this study) and the more-oxidized OOA (MO-OOA) were explored. Based on the multilinear regression with molecular markers of OA (e.g., hydroxybenzonic acids and 2,3-dihydroxy-4-oxopentanoic acid), we presumed that anthropogenic organic compounds, especially aromatics, were the most likely precursors of LO-OOA1. MO-OOA correlated well with odd oxygen (Ox), and its concentration responded positively to the increase of liquid water content (LWC) in NR-PM1, indicating that the formation of MO-OOA involved photochemical oxidation and aqueous processes. It exhibited the best correlation with malic acid which can be formed through the oxidation of various precursors. Moreover, it was plausible that LO-OOA1 was further oxidized to MO-OOA through aqueous processes, as indicated by the consistent diurnal variations of MO-OOA to LO-OOA1 ratio and LWC. This study highlights the important roles of anthropogenic emissions and aqueous processes in SOA formation in coastal areas downwind of cities.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Compostos Orgânicos , Material Particulado/análise
5.
Chemosphere ; 302: 134816, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35525456

RESUMO

Continuous measurements of ozone (O3) and nitrogen oxides (NOx = NO + NO2) were conducted from 2007 to 2019 in Hong Kong in order to evaluate the effectiveness of control strategies for NOx emission from diesel commercial vehicles (DCV). DCV control programs were periodically applied in three phases starting from 2007, 2010 and 2014. It was found that NO and NO2 levels decreased during the study period but more dramatically after the implementation of DCV Phase III than pre-DCV Phase III. Source apportionment analysis confirmed that the ambient NO and NO2 in Hong Kong attributed to the regulated DCV emissions in Phase III reduced at rates of 5.1-14.4 ppbv/yr in roadside environment and 1.6-3.1 ppbv/yr in suburban area. Despite overall NOx reduction, increased NO2/NOx ratios were recorded during the study period possibly due to the application of diesel particulate filter (DPF) in DCVs. However, after introducing DCV Phase III, observed O3 values experienced more dramatic increasing trends in most areas of Hong Kong than pre-DCV Phase III. Model simulations revealed that O3 production rate kept increasing and turned to be less sensitive to NOx from 2014 to 2019. On the roadside, net O3 production rate was more than doubled during 2014-2019 owing to NOx reduction. Moreover, the levels of oxidants (OH, HO2 and RO2) were 1.5-5 times those before 2014. In suburban environment, NOx reduction also facilitated O3 production and radical cycling, but made smaller contributions than those on the roadside during 2014-2019. This study unraveled that NOx reductions benefited from DCV regulations caused increase in surface O3 and fueled O3 photochemistry in various environments. More stringent control measures on emissions of VOCs, especially those with high OH reactivity, might help to better mitigate O3 pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , China , Monitoramento Ambiental , Hong Kong , Dióxido de Nitrogênio/análise , Ozônio/análise , Compostos Orgânicos Voláteis/análise
6.
Sci Total Environ ; 831: 154788, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35341858

RESUMO

Ozone (O3) pollution has been a persistent problem in Hong Kong, particularly in autumn when severe O3 pollution events are often observed. In this study, linear regression analyses of long-term O3 data in suburban Hong Kong revealed that the variation of autumn O3 obviously leveled off during 2005-2017, mainly due to the significant decrease of autumn O3 in 2013-2017 (period II), despite the increase in 2005-2012 (period I). In addition, the rise of O3 in summer and winter also ceased since 2013. In contrary, O3 continuously increased throughout the spring of 2005-2017, especially in period II. Consequently, an incessant increase of overall O3 was observed during 2005-2017. A statistical model combining Kolmogorov-Zurbenko filter with multiple linear regressions, and a photochemical box model incorporating CB05 mechanism were applied to probe the causes of the above trends. In general, O3 production was controlled by VOC-limited regime throughout 13 years. The meteorological variability and regional transport facilitated the O3 growth in period Ι. In contrast, the unchanged O3 level in period II was attributable to the negative impact of meteorological variability and reduction of regional transport effect on O3 formation and accumulation, as well as the negligible change in locally-produced O3. In autumn of period II, the inhibitory meteorological variability, reduced regional transport, and alleviated local production were the driving force for the hard-earned decrease of O3. However, the remarkable rise of spring O3 was caused by the reduction of NOx, especially in the spring of period II. The findings of the long-term and seasonal variations of O3 pollution in Hong Kong are helpful for future O3 mitigation.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Hong Kong , Ozônio/análise , Estações do Ano
7.
Indoor Air ; 32(3): e13017, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35347786

RESUMO

A growing number of studies warn of the adverse health effects of indoor particulate matters (PM). However, little is known about the molecular compositions and emission characteristics of PM-bound organics (OM) indoors, a critical group of species with highest concentration and complexity in indoor PM. In a Hong Kong residence where prescribed activities were performed with normal frequency and intensity, we found that the activities significantly elevated not only the total concentration but also the fraction of OM in indoor PM. However, the concentration of the total PM-bound OM outdoors (10.3 ± 0.7 µg/m3 ) surpassed that for the indoor counterpart during the undisturbed period (8.2 ± 0.1 µg/m3 ), that is, period when there was no activity with high emission of PM but the residual effects of previous activities might remain. Emissions of indoor activities involving combustion or high-temperature processes significantly elevated the indoor-to-outdoor (I/O) ratios for a majority of organic species. In addition, gas-to-particle partitioning, secondary formation, carrying-over (residues of pollutants in the air), and re-emission also modulated the I/O ratios of some compounds. Chemically comprehensive emission profiles of speciated organics were obtained for 5 indoor activities in the residence. While the indoor contribution to PM-bound OM was estimated to be not higher than 13.1% during the undisturbed period, carrying-over and/or re-emission seemed to exist for certain compounds emitted from cigarette smoking and incense burning. This study enhances knowledge on emissions and airborne fate of speciated organics in indoor PM.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Hong Kong , Tamanho da Partícula , Material Particulado/análise
8.
Nat Commun ; 13(1): 939, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177585

RESUMO

Chlorine atoms (Cl) are highly reactive and can strongly influence the abundances of climate and air quality-relevant trace gases. Despite extensive research on molecular chlorine (Cl2), a Cl precursor, in the polar atmosphere, its sources in other regions are still poorly understood. Here we report the daytime Cl2 concentrations of up to 1 ppbv observed in a coastal area of Hong Kong, revealing a large daytime source of Cl2 (2.7 pptv s-1 at noon). Field and laboratory experiments indicate that photodissociation of particulate nitrate by sunlight under acidic conditions (pH < 3.0) can activate chloride and account for the observed daytime Cl2 production. The high Cl2 concentrations significantly increased atmospheric oxidation. Given the ubiquitous existence of chloride, nitrate, and acidic aerosols, we propose that nitrate photolysis is a significant daytime chlorine source globally. This so far unaccounted for source of chlorine can have substantial impacts on atmospheric chemistry.

9.
Sci Total Environ ; 801: 149603, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416603

RESUMO

To investigate photochemical ozone (O3) pollution in urban areas in China, O3 and its precursors and meteorological parameters were simultaneously measured in five megacities in China in summer 2018. Moderate wind speeds, strong solar radiation and high temperature were observed in all cities, indicating favorable meteorological conditions for local O3 formation. However, the unusually frequent precipitation caused by typhoons reaching the eastern coastline resulted in the least severe air pollution in Shanghai. The highest O3 level was found in Beijing, followed by Lanzhou and Wuhan, while relatively lower O3 value was recorded in Chengdu and Shanghai. Photochemical box model simulations revealed that net O3 production rate in Lanzhou was the largest, followed by Beijing, Wuhan and Chengdu, while it was the lowest in Shanghai. Besides, the O3 formation was mainly controlled by volatile organic compounds (VOCs) in most cities, but co-limited by VOCs and nitrogen oxides in Lanzhou. Moreover, the dominant VOC groups contributing to O3 formation were oxygenated VOCs (OVOCs) in Beijing and Wuhan, alkenes in Lanzhou, and aromatics and OVOCs in Shanghai and Chengdu. Source apportionment analysis identified six sources of O3 precursors in these cities, including liquefied petroleum gas usage, diesel exhaust, gasoline exhaust, industrial emissions, solvent usage, and biogenic emissions. Gasoline exhaust dominated the O3 formation in Beijing, and LPG usage and industrial emissions made comparable contributions in Lanzhou, while LPG usage and solvent usage played a leading role in Wuhan and Chengdu, respectively. The findings are helpful to mitigate O3 pollution in China.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Cidades , Monitoramento Ambiental , Ozônio/análise , Compostos Orgânicos Voláteis/análise
10.
Environ Int ; 156: 106732, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34197974

RESUMO

Severe episodic air pollution blankets entire cities and regions and have a profound impact on humans and their activities. We compiled daily fine particle (PM2.5) data from 100 cities in five continents, investigated the trends of number, frequency, and duration of pollution episodes, and compared these with the baseline trend in air pollution. We showed that the factors contributing to these events are complex; however, long-term measures to abate emissions from all anthropogenic sources at all times is also the most efficient way to reduce the occurrence of severe air pollution events. In the short term, accurate forecasting systems of such events based on the meteorological conditions favouring their occurrence, together with effective emergency mitigation of anthropogenic sources, may lessen their magnitude and/or duration. However, there is no clear way of preventing events caused by natural sources affected by climate change, such as wildfires and desert dust outbreaks.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental , Humanos , Meteorologia , Material Particulado/análise
11.
Indoor Air ; 31(5): 1340-1352, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33772878

RESUMO

Due to the high health risks associated with indoor air pollutants and long-term exposure, indoor air quality has received increasing attention. In this study, we put emphasis on the molecular composition, source emissions, and chemical aging of air pollutants in a residence with designed activities mimicking ordinary Hong Kong homes. More than 150 air pollutants were detected at molecular level, 87 of which were quantified at a time resolution of not less than 1 hour. The indoor-to-outdoor ratios were higher than 1 for most of the primary air pollutants, due to emissions of indoor activities and indoor backgrounds (especially for aldehydes). In contrast, many secondary air pollutants exhibited higher concentrations in outdoor air. Painting ranked first in aldehyde emissions, which also caused great enhancement of aromatics. Incense burning had the highest emissions of particle-phase organics, with vanillic acid and syringic acid as markers. The other noteworthy fingerprints enabled by online measurements included linoleic acid, cholesterol, and oleic acid for cooking, 2,5-dimethylfuran, stigmasterol, iso-/anteiso-alkanes, and fructose isomers for smoking, C28 -C34 even n-alkanes for candle burning, and monoterpenes for the use of air freshener, cleaning agents, and camphor oil. We showed clear evidence of chemical aging of cooking emissions, giving a hint of indoor heterogeneous chemistry. This study highlights the value of organic molecules measured at high time resolutions in enhancing our knowledge on indoor air quality.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental , Culinária , Hong Kong , Humanos , Tamanho da Partícula , Material Particulado , Emissões de Veículos
12.
Environ Pollut ; 270: 116285, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33352486

RESUMO

Investigating the long-term trends of alkyl nitrates (RONO2) is of great importance for evaluating the variations of photochemical pollution. Mixing ratios of C1-C5 RONO2 were measured in autumn Hong Kong from 2002 to 2016, and the average level of 2-butyl nitrate (2-BuONO2) always ranked first. The C1-C4 RONO2 all showed increasing trends (p < 0.05), and 2-BuONO2 had the largest increase rate. The enhancement in C3 RONO2 was partially related to elevated propane, and dramatic decreases (p < 0.05) in both nitrogen monoxide (NO) and nitrogen dioxide (NO2) also led to the increased RONO2 formation. In addition, an increase of hydroxyl (OH) and hydroperoxyl (HO2) radicals (p < 0.05) suggested enhanced atmospheric oxidative capacity, further resulting in the increases of RONO2. Source apportionment of C1-C4 RONO2 specified three typical sources of RONO2, including biomass burning emission, oceanic emission, and secondary formation, of which secondary formation was the largest contributor to ambient RONO2 levels. Mixing ratios of total RONO2 from each source were quantified and their temporal variations were investigated. Elevated RONO2 from secondary formation and biomass burning emission were two likely causes of increased ambient RONO2. By looking into the spatial distributions of C1-C5 RONO2, regional transport from the Pearl River Delta (PRD) was inferred to build up RONO2 levels in Hong Kong, especially in the northwestern part. In addition, more serious RONO2 pollution was found in western PRD region. This study helps build a comprehensive understanding of RONO2 pollution in Hong Kong and even the entire PRD.


Assuntos
Poluentes Atmosféricos , Nitratos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Hong Kong , Nitratos/análise , Oceanos e Mares
13.
Sci Total Environ ; 754: 141812, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32906035

RESUMO

To explore the photochemical O3 pollution over the Pearl River Estuary (PRE), intensive measurements of O3 and its precursors, including trace gases and volatile organic compounds (VOCs), were simultaneously conducted at a suburban site on the east bank of PRE (Tung Chung, TC) in Hong Kong and a rural site on the west bank (Qi'ao, QA) in Zhuhai, Guangdong in autumn 2016. Throughout the sampling period, 3 days with high O3 levels (maximum hourly O3 > 100 ppbv) were captured at both sites (pattern 1) and 13 days with O3 episodes occurred only at QA (pattern 2). It was found that O3 formation at TC was VOC-limited in both patterns because of the large local NOx emissions. However, the O3 formation at QA was co-limited by VOCs and NOx in pattern 1, but VOC-limited in pattern 2. In both patterns, isoprene, formaldehyde, xylenes and trimethylbenzenes were the top 4 VOCs that modulated local O3 formation at QA, while they were isoprene, formaldehyde, xylenes and toluene at TC. In pattern 1, the net O3 production rate at QA (13.1 ± 1.6 ppbv h-1) was high, and comparable (p = 0.40) to that at TC (12.1 ± 1.5 ppbv h-1), so was the hydroxyl radical (i.e., OH), implying high atmospheric oxidative capacity over PRE. In contrast, the net O3 production rate was significantly higher (p < 0.05) at QA (16.3 ± 0.4 ppbv h-1) than that at TC (4.7 ± 0.2 ppbv h-1) in pattern 2, and the OH concentration and cycling rate were also higher, indicating much stronger photochemical reactions at QA. These findings enhanced our understanding of O3 photochemistry in the Pearl River estuary, which could be extended to other estuaries.

14.
Environ Pollut ; 269: 116163, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33280908

RESUMO

Nitrogen dioxide (NO2) is one of the most important air pollutants that highly affect the formation of secondary fine particles and tropospheric ozone. In this study based on hourly NO2 observations from June 2014 to May 2019 and a regional air quality model (WRF-CMAQ), we comprehensively analyzed the spatiotemporal variations of NO2 concentrations throughout China and in 12 urban agglomerations (UAs) and quantitatively showed the anthropogenic and meteorological factors controlling the interannual variations (IAVs). The ground observations and tropospheric columns show that high NO2 concentrations are predominantly concentrated in UAs such as Beijing-Tianjin-Hebei (BTH), the Shandong Peninsula (SP), the Central Plain (CP), Central Shaanxi (CS), and the Yangtze River Delta (YRD). For different UAs, the NO2 IAVs are different. The NO2 increased first and then decreased in 2016 or 2017 in BTH, YRD, CS, and Cheng-Yu, and decreased from 2014 to 2019 in Harbin-Changchun, CP, SP, Northern Slope of Tianshan Mountain, and Beibu-Gulf, while increased slightly in the Pearl River Delta (PRD) and Hohhot-Baotou-Erdos-Yulin (HBEY). The NO2 IAVs were primarily dominated by emission changes. The net wintertime decreases of NO2 in BTH, Yangtze River Middle-Reach, and PRD were mostly contributed by emission reductions from 2014 to 2018, and the significant increase in the wintertime in HBEY was also dominated by emission changes (93%). Weather conditions also have an important effect on the NO2 IAVS. In BTH and HBEY, the increases of NO2 in winter of 2016 are mainly attributed to the unfavorable weather conditions and for the significant decreases in the winter of 2017, the favorable weather conditions also play a very important role. This study provides a basic understanding on the current situation of NO2 pollution and are helpful for policymakers as well as those interested in the study of tropospheric ozone changes in China and downwind areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Pequim , China , Monitoramento Ambiental , Dióxido de Nitrogênio/análise , Material Particulado/análise , Estações do Ano , Tempo (Meteorologia)
15.
Environ Sci Technol ; 54(18): 11058-11069, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32805105

RESUMO

Reducing the amount of organic aerosol (OA) is crucial to mitigation of particulate pollution in China. We present time and air-origin dependent variations of OA markers and source contributions at a regionally urban background site in South China. The continental air contained primary OA markers indicative of source categories, such as levoglucosan, fatty acids, and oleic acid. Secondary OA (SOA) markers derived from isoprene and monoterpenes also exhibited higher concentrations in continental air, due to more emissions of their precursors from terrestrial ecosystems and facilitation of anthropogenic sulfate for monoterpenes SOA. The marine air and continental-marine mixed air had more abundant hydroxyl dicarboxylic acids (OHDCA), with anthropogenic unsaturated organics as potential precursors. However, OHDCA formation in continental air was likely attributable to both biogenic and anthropogenic precursors. The production efficiency of OHDCA was highest in marine air, related to the presence of sulfur dioxide and/or organic precursors in ship emissions. Regional biomass burning (BB) was identified as the largest contributor of OA in continental air, with contributions fluctuating from 8% to 74%. In contrast, anthropogenic SOA accounted for the highest fraction of OA in marine (37 ± 4%) and mixed air (31 ± 3%), overriding the contributions from BB. This study demonstrates the utility of molecular markers for discerning OA pollution sources in the offshore marine atmosphere, where continental and marine air pollutants interact and atmospheric oxidative capacity may be enhanced.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Ecossistema , Monitoramento Ambiental , Material Particulado/análise
16.
Chemosphere ; 246: 125731, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31918083

RESUMO

Volatile organic compounds (VOCs) are ubiquitous in the atmosphere and the majority of them have been proved to be detrimental to human health. The hazardous VOCs were studied very insufficiently in China, despite the enormous emissions of VOCs. In this study, the concentrations and sources of 17 hazardous VOCs reported in literature were reviewed, based on which the health effects were assessed. In-depth survey indicated that benzene and toluene had the highest concentrations in eastern China (confined to the study regions reviewed, same for the other geographic generalization), which however showed significant declines. The southern China featured high levels of trichloroethylene. Dichloromethane and chloroform were observed to be concentrated in northern China. The distributions of 1,2-dichloropropane and tetrachloroethylene were homogeneous across the country. Basically consistent with the spatial patterns of ozone, the summertime formaldehyde exhibited higher levels in eastern and northern China, and increased continuously. While transportation served as the largest source of benzene and toluene, industrial emissions and secondary formation were the predominant contributors of halogenated hydrocarbons and aldehydes (formaldehyde and acetaldehyde), respectively. The chronic non-cancer effects of inhalation exposure to the hazardous VOCs were insignificant, however the probabilities of developing cancers by inhaling the hazardous VOCs in ambient air of China were quite high. Formaldehyde was identified as the primary carcinogenic VOC in the atmosphere of most regions. The striking results, especially the high inhalation cancer risks, alerted us that the emission controls of hazardous VOCs were urgent in China, which must be grounded upon full understanding of their occurrence, presence and health effects.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Compostos Orgânicos Voláteis/análise , Aldeídos , Atmosfera , Benzeno , China , Formaldeído , Humanos , Exposição por Inalação/estatística & dados numéricos , Ozônio , Tolueno
17.
Environ Pollut ; 252(Pt B): 1910-1919, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31227349

RESUMO

Peroxyacetyl nitrate (PAN) is an important reservoir of atmospheric nitrogen, modulating reactive nitrogen cycle and ozone (O3) formation. To understand the origins of PAN, a field measurement was conducted at Tung Chung site (TC) in suburban Hong Kong from October to November 2016. The average level of PAN was 0.63 ±â€¯0.05 ppbv, with a maximum of 7.30 ppbv. Higher PAN/O3 ratio (0.043-0.058) was captured on episodes, i.e. when hourly maximum O3 exceeded 80 ppbv, than on non-episodes (0.01), since O3 production was less efficient than PAN when there was an elevation of precursors (i.e. volatile organic compounds (VOCs) and nitrogen oxide (NOx)). Model simulations revealed that oxidations of acetaldehyde (65.3 ±â€¯2.3%), methylglyoxal (MGLY, 12.7 ±â€¯1.2%) and other oxygenated VOCs (OVOCs) (8.0 ±â€¯0.6%), and radical cycling (12.2 ±â€¯0.8%) were the major production pathways of peroxyacetyl (PA) radical, while local PAN formation was controlled by both VOCs and nitrogen dioxide (NO2). Among all VOC species, carbonyls made the highest contribution (59%) to PAN formation, followed by aromatics (26%) and biogenic VOCs (BVOCs) (10%) through direct oxidation/decomposition. Besides, active VOCs (i.e. carbonyls, aromatics, BVOCs and alkenes/alkynes) could stimulate hydroxyl (OH) production, thus indirectly facilitating the PAN formation. Apart from primary emissions, carbonyls were also generated from oxidation of first-generation precursors, i.e., hydrocarbons, of which xylenes contributed the most to PAN production. Furthermore, PAN formation suppressed local O3 formation at a rate of 2.84 ppbv/ppbv, when NO2, OH and hydroperoxy (HO2) levels decreased and nitrogen monoxide (NO) value enhanced. Namely, O3 was reduced by 2.84 ppbv per ppbv PAN formation. Net O3 production rate was weakened (∼36%) due to PAN photochemistry, so as each individual production and loss pathway. The findings advanced our knowledge of atmospheric PAN and its impact on O3 production.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluição Ambiental/análise , Ozônio/análise , Ácido Peracético/análogos & derivados , Compostos Orgânicos Voláteis/análise , Acetaldeído/química , Hong Kong , Hidrocarbonetos/análise , Radical Hidroxila/análise , Óxidos de Nitrogênio/análise , Oxirredução , Ácido Peracético/análise , Fotoquímica , Aldeído Pirúvico/química , Xilenos/análise
18.
Environ Sci Process Impacts ; 21(6): 916-929, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31089656

RESUMO

Ozone (O3), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O3 has increased substantially in China. O3 non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O3 pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial-temporal variations of the relationship between O3 and its precursors (i.e. O3 formation regime), built upon the previous reviews of the spatial-temporal variations of O3 and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O3 pollution, followed by implications for the control of O3 pollution. This literature review indicates that O3 formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O3 seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NOx-limited regime dominates rural/remote areas. From summer to winter, the O3 formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O3 formation in China shifted toward increasing sensitivity to VOC emissions before the 12th Five-Year-Plan. However, after the 12th Five-Year-Plan, successful reduction of NOx slowed down this trend. Further effective control of VOCs is expected to achieve sustained O3 attainment in the future. To timely solve the current O3 pollution problem, precise control of O3 precursors is proposed, together with the joint prevention and control of regional air pollution.


Assuntos
Poluentes Atmosféricos/química , Ozônio/química , Poluição do Ar/prevenção & controle , China , Óxidos de Nitrogênio/química , Estações do Ano , Compostos Orgânicos Voláteis/química
19.
Sci Total Environ ; 677: 732-744, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31075619

RESUMO

During the past five years, China has witnessed a rapid drop of nitrogen oxides (NOx) owing to the wildly-applied rigorous emission control strategies across the country. However, ozone (O3) pollution was found to steadily deteriorate in most part of eastern China, especially in developed regions such as Jing-Jin-Ji (JJJ), Yangtze River Delta region (YRD) and Pearl River Delta region (PRD). To shed more light on current O3 pollution and its responses to precursor emissions, we integrate satellite retrievals, ground-based measurements together with regional numerical simulation in this study. It is indicated by multiple sets of observational data that NOx in eastern China has declined more than 25% from 2012 to 2016. Based on chemical transport modeling, we find that O3 formation in eastern China has changed from volatile organic compounds (VOCs) sensitive regime to the mixed sensitive regime due to NOx reductions, substantially contributing to the recent increasing trend in urban O3. In addition, such transitions tend to bring about an ~1-1.5 h earlier peak of net O3 formation rate. We further studied the O3 precursors relationships by conducting tens of sensitivity simulations to explore potential ways for effective O3 mitigation. It is suggested that the past control measures that only focused on NOx may not work or even aggravate O3 pollution in the city clusters. In practice, O3 pollution in the three regions is expected to be effectively mitigated only when the reduction ratio of VOCs/NOx is greater than 2:1, indicating VOCs-targeted control is a more practical and feasible way.

20.
Sci Total Environ ; 673: 424-434, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30991332

RESUMO

To investigate photochemical ozone (O3) pollution over the South China Sea (SCS), an intensive sampling campaign was conducted from August to November simultaneously at a continental site (Tung Chung, TC) and a marine site (Wan Shan Island, WSI). It was found that when continental air masses intruded the SCS, O3 episodes often occurred subsequently. To discover the causes, a photochemical trajectory model (PTM) coupled with the near-explicit Master Chemical Mechanism (MCM) was adopted, and the photochemical processes of air masses during the transport from TC to WSI were investigated. The simulated O3 and its precursors (i.e. NOx and VOCs) showed a reasonably good agreement with the observations at both TC and WSI, indicating that the PTM was capable of simulating O3 formation for air masses traveling from TC to WSI. The modeling results revealed that during the transport of air masses from TC to WSI, both VOC and NOx decreased in the morning while O3 increased significantly, mainly due to rapid chemical reactions with elevated radicals over the SCS. The elevated radicals over the SCS were attributable to the fact that higher NOx at TC consumed more radicals, whereas the concentration of radicals increased from TC to WSI because of NOx dilution and destruction. Subsequently, the photochemical cycling of radicals accelerated, leading to high O3 mixing ratios over the SCS. Furthermore, based on the source profiles of the emission inventory used, the contributions of six sources, i.e. gasoline vehicle exhaust, diesel vehicle exhaust, gasoline evaporation and LPG usage, solvent usage, biomass and coal burning, and biogenic emissions, to maritime O3 formation were evaluated. The results suggested that gasoline vehicles exhaust and solvent usage largely contributed the O3 formation over the SCS (about 5.2 and 3.8 ppbv, respectively). This is the first time that the contribution of continental VOC sources to the maritime O3 formation was quantified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...