Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34771879

RESUMO

This paper presents an experimental investigation of flexural behavior of circular ultra-high-performance concrete with coarse aggregate (CA-UHPC)-filled steel tubes (CA-UHPCFSTs). A total of seven flexural members were tested under a four-point bending load. The failure modes, overall deflection curves, moment-versus-curvature relationships, moment-versus-strain curves, strain distribution curves, ductility, flexural stiffness and ultimate flexural capacity were evaluated. The results indicate that the CA-UHPCFSTs under bending behaved in a good ductile manner. The CA-UHPC strength has a limited effect on the ultimate flexural capacity, while the addition of steel fiber can improve the ultimate flexural capacity. Increasing the steel tube thickness leads to higher flexural stiffness and ultimate flexural capacity. There is a significant confinement effect between the steel tube and the CA-UHPC core in the compressive zone and centroidal plane after the specimen enters the elastic-plastic stage, while the confinement effect in the tensile zone is minimal. Moreover, the measured flexural stiffness and ultimate flexural capacity were compared with the predictions using various design specifications. Two empirical formulas for calculating the initial and serviceability-level flexural stiffness of CA-UHPCFSTs are developed. Further research is required to propose the accurate design formula for the ultimate flexural capacity of CA-UHPCFSTs.

2.
Materials (Basel) ; 14(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069286

RESUMO

This paper adopts the method of steel tube wall thickness and strength reduction to simulate corrosion damage. The numerical model of the square concrete-filled steel tube long column (SCFST-LC) under eccentric compression after acid rain corrosion is established in the finite element software, ABAQUS. The reliability and accuracy of the model are verified by comparing it with published relevant experimental results. The failure mode, load-deformation curve, and ultimate compressive load were analysed. Following that, the impacts of section size, yield strength of the steel tube, axial compressive strength of concrete, steel ratio, slenderness ratio, and load eccentricity on its ultimate compressive load are comprehensively investigated. The results demonstrate that the ultimate compressive load of the SCFST-LC decreases significantly with the increase in corrosion rate. The corrosion rate increases from 10 to 40%, and the ultimate bearing capacity decreases by 37.6%. Its ultimate bearing capacity can be enhanced due to the increase in section size, material strength, and steel ratio. In contrast, the ascending slenderness ratio and load eccentricity has harmful effects on the ultimate compressive load of the specimens. Finally, a simplified formula for the axial compressive load of the SCFST-LC under eccentric compression after acid rain corrosion is proposed. The calculation accuracy is high and the deviation of the results is basically within 15%, which is in good agreement with the numerical simulation results.

3.
Materials (Basel) ; 12(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547163

RESUMO

This paper presents a theoretical investigation on the safety evaluation, stability evaluation, and service life prediction of concrete-filled steel tube (CFST) structures in a Northern China area with acid rain. The finite element software ABAQUS was used to establish a numerical model, which was used to simulate the axial compression behavior of CFST columns subjected to the combined actions of freeze-thaw cycles and acid rain corrosion. The model performance was validated using the experimental results of the evaluation of mechanical properties, including the failure mode and load-displacement curve. Then, the effects of the section size, material strength, steel ratio, and combined times on the residual capacity were studied. The results show that the section size has a smaller influence on the residual strength than the other parameters and can be neglected in the design procedure. However, the other parameters, including the material strength, steel ratio, and combined times have relatively large influences on the axial compressive performance of CFST stub columns subjected to a combination of freeze-thaw cycles and acid rain corrosion. Finally, design formulae for predicting the residual strength of CFST stub columns that are under axial compression and the combined effect of freeze-thaw cycles and acid rain corrosion are proposed, and their results agree well with the numerical results.

4.
Materials (Basel) ; 12(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987064

RESUMO

This study investigated the axial compressive performance of six thin-walled concrete-filled steel tube (CFST) square column specimens with steel bar stiffeners and two non-stiffened specimens at constant temperatures of 20 °C, 100 °C, 200 °C, 400 °C, 600 °C and 800 °C. The mechanical properties of the specimens at different temperatures were analyzed in terms of the ultimate bearing capacity, failure mode, and load-displacement curve. The experiment results show that at high temperature, even though the mechanical properties of the specimens declined, leading to a decrease of the ultimate bearing capacity, the ductility and deformation capacity of the specimens improved inversely. Based on finite element software ABAQUS, numerical models were developed to calculate both temperature and mechanical fields, the results of which were in good agreement with experimental results. Then, the stress mechanism of eight specimens was analyzed using established numerical models. The analysis results show that with the increase of temperature, the longitudinal stress gradient of the concrete in the specimen column increases while the stress value decreases. The lateral restraint of the stiffeners is capable of restraining the steel outer buckling and enhancing the restraint effect on the concrete.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...