Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(1): 458-471, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34936356

RESUMO

NiO/ceria-zirconia (CZ) is a promising catalyst for the selective oxidation of benzene, as the Lewis-acidic NiO clusters can activate C-H bonds and the redox-active CZ support can activate O2 and supply active oxygen species for the reaction. In this study, we used transmission in situ infrared (IR) spectroscopy to examine surface species formed from benzene, water, oxygen, phenol, and catechol on a NiO/CZ catalyst. The formation of surface species from benzene and phenol was compared at different temperatures in the range of 50-200 °C in the presence and absence of water vapor. We also examined the role of the NiO clusters and the CZ support during benzene activation by comparing the surface species formed on NiO-CZ with those formed on a Ni-free CZ support and on a NiO/SiO2 catalyst. The spectrum of surface species from dosing benzene at 180 °C provides evidence for C-H bond activation. Specifically, the observation of C-O stretching vibrations indicates the formation of phenolate species. Introduction of water enhances these IR signals and introduces several additional peaks, indicating that a variety of different surface species are formed. These results show that NiO/CZ could catalyze direct conversion of benzene to phenol.

3.
Angew Chem Int Ed Engl ; 56(44): 13876-13881, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28787552

RESUMO

The conversion of methane into alcohols under moderate reaction conditions is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can convert methane to methanol and ethanol in a single, steady-state process at 723 K using O2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to the synergy between the small Lewis acidic NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...