Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioanalysis ; 15(10): 581-589, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37278334

RESUMO

Aims: This study was designed to analyze the requirements for clinical trials of SARS-CoV-2 antigen testing to explore the rationality and scientific rigor of clinical trials. Methods: The guidelines for the listing of SARS-CoV-2 antigen tests were compared and the requirements for clinical trials were analyzed to find similarities and differences between China, the USA and Europe. Results: The requirements for clinical trials of SARS-CoV-2 antigen tests in China, the USA and Europe were consistent in terms of methods. However, differences were found in the requirements for protocol design. Conclusion: The differences in clinical trial requirements stem from regulations and the actual conditions across regions, but all clinical trials are designed to obtain valid clinical performance of products.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , China , Ensaios Clínicos como Assunto , COVID-19/diagnóstico , Europa (Continente) , Testes Imunológicos , Estados Unidos
2.
Glob Chang Biol ; 28(7): 2327-2340, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34995391

RESUMO

Algal blooms (ABs) in inland lakes have caused adverse ecological effects, and health impairment of animals and humans. We used archived Landsat images to examine ABs in lakes (>1 km2 ) around the globe over a 37-year time span (1982-2018). Out of the 176032 lakes with area >1 km2 detected globally, 863 were impacted by ABs, 708 had sufficiently long records to define a trend, and 66% exhibited increasing trends in frequency ratio (FRQR, ratio of the number of ABs events observed in a year in a given lake to the number of available Landsat images for that lake) or area ratio (AR, ratio of annual maximum area covered by ABs observed in a lake to the surface area of that lake), while 34% showed a decreasing trend. Across North America, an intensification of ABs severity was observed for FRQR (p < .01) and AR (p < .01) before 1999, followed by a decrease in ABs FRQR (p < .01) and AR (p < .05) after the 2000s. The strongest intensification of ABs was observed in Asia, followed by South America, Africa, and Europe. No clear trend was detected for the Oceania. Across climatic zones, the contributions of anthropogenic factors to ABs intensification (16.5% for fertilizer, 19.4% for gross domestic product, and 18.7% for population) were slightly stronger than climatic drivers (10.1% for temperature, 11.7% for wind speed, 16.8% for pressure, and for 11.6% for rainfall). Collectively, these divergent trends indicate that consideration of anthropogenic factors as well as climate change should be at the forefront of management policies aimed at reducing the severity and frequency of ABs in inland waters.


Assuntos
Monitoramento Ambiental , Eutrofização , Animais , Mudança Climática , Monitoramento Ambiental/métodos , Lagos , Vento
3.
Sci Total Environ ; 810: 151188, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710411

RESUMO

Lake clarity, usually measured by Secchi disc depth (SDD), is a reliable proxy of lakes trophic status due to its close link with total suspended matter, chlorophyll-a, and nutrients. Trained with in-situ measured SDD and match-up Landsat images, we established various regression models to estimate SDD for global lakes. We selected a unified model which demonstrated good spatiotemporal transferability, and has potential to map SDD in different years with good quality of Landsat top-of-atmosphere (TOA) images embedded in Google Earth Engine (GEE). The unified model was successfully calibrated (n = 3586 data points, R2 = 0.84, MAPE = 29.8%) against SDD measured in 2235 lakes across the world, and the validation (n = 1779, R2 = 0.76, MAPE = 38.8%) also exhibited stable performance. The unified model was tuned to historical SDD measurements coincident with different Landsat sensors (L5-TM, L7-ETM+, L8-OLI) launched over the past four decades (1984-2020), thus confirming its temporal stability. Global SDD was mapped using GEE with OLI TOA products mainly acquired in 2019 to examine the spatial variation of lake water clarity (lake surface area ≥ 1 ha) all over the world. Worldwide, lake water clarity averaged 3.13 ± 1.71 m in 2019, but exhibited remarkable spatial variability due to catchment hydrological and landscape settings, lake morphology, elevation and anthropogenic impact. Inland waters in Europe (4.18 ± 1.82 m) and North America (3.84 ± 1.77 m) had the highest clarity due to greater water depth combined with less human disturbance in the high latitude regions. Lakes in South America (2.50 ± 2.33 m), Asia (2.44 ± 1.63 m) and Africa (2.36 ± 0.72 m) displayed intermediate clarity. Lakes in Oceania (1.97 ± 1.48 m) exhibited the lowest clarity for all continents except Antarctica. Further, we used the mapped SDD to evaluate water trophic status using the Carlson trophic state index. Our results indicate that, in 2019, about 63.6% of the lake areas and 47.8% of total lake numbers (2,219,627/4,646,056) were oligotrophic for global lakes, while about 23.6% areal percent and 37.1% of lake numbers are eutrophic mostly as a result of their being located in agricultural and urban-dominated drainage basins. This study, for the first time, provides water clarity information for lakes with area ≥ 1 ha all over the world with 30-m resolution and facilitates the understanding of the water clarity relevant to TSM (r = 0.95), Chl-a (r = 0.73), total phosphorus (r = 0.75), total nitrogen (r = 0.60), which could further provide water clarity data and technical support for trophic level evaluations as well. This unified model could serve as a powerful research tool for long-term monitoring of aquatic ecosystems and assessing their resilience to anthropogenic disturbance and climate change-related stressors.


Assuntos
Efeitos Antropogênicos , Ecossistema , Monitoramento Ambiental , Humanos , Lagos , Qualidade da Água
4.
JTO Clin Res Rep ; 2(4): 100163, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34590013

RESUMO

INTRODUCTION: Lung cancer is the leading cause of cancer-related morbidity and mortality in the People's Republic of China. Targeted therapies for patients with lung cancer, which depend on accurate identification of actionable genomic alteration, have improved survival compared with previously available treatments. However, data on the types of molecular testing often used in the People's Republic of China, and how they have changed over time, are scarce. We explored the overall landscape of molecular testing of lung cancer in mainland People's Republic of China in the past decade. METHODS: We distributed a stratified random sampling survey of molecular testing to 49 hospitals from members of the Molecular Pathology Collaboration Group of Chinese Anti-Cancer Association which was weighted by the numbers of lung cancer cases in seven different geographic regions in mainland People's Republic of China from 2010 to 2019. The questionnaire contained four parts for all respondents. The questionnaire ascertained the use of approved in vitro diagnostic (IVD) devices published by the Center for Medical Device Evaluation, National Medical Products Administration of the People's Republic of China. RESULTS: A total of 226,227 NSCLC specimens were tested from 2010 to 2019 in the selected hospitals. The annual number of initiated molecular tests increased over time (p < 0.0001), with an average annual growth rate of 31.8%. A notable increase in the number of molecular tests occurred during 2014 and 2016, which coincided with the approval of the National Medical Products Administration to IVD devices. For the diagnosis of molecular subtypes, EGFR mutation testing was first conducted in year 2007, followed by ALK translocation testing in 2010 and ROS1 in 2011. For other rare genetic variations in NSCLC, BRAF mutation testing was first launched in 2012, MET exon 14 skipping mutation in 2014, HER2 exon 20 mutations in 2017, and RET translocation in 2015. A markedly uneven distribution was also observed in the geography of leading units with the largest number of leading units located in east People's Republic of China (34.7%, 17 of 49) and the smallest number located in northwest People's Republic of China (6.1%, 3 of 49). The growth trends we observed illustrate the progress and increasing capability of molecular testing of lung cancer achieved in mainland People's Republic of China in the decade from 2010. CONCLUSIONS: In the decade 2010 to 2019, progress and increased capability of molecular testing of lung cancer were achieved in mainland People's Republic of China. Further efforts should address the clinical application of next-generation sequencing technology, rare genomic aberrations, and the balance between novel genomic testing techniques and the approval of IVD products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...