Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(19): 8409-8417, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34591493

RESUMO

The dielectric screening from the disordered media surrounding atomically thin transition metal dichalcogenides (TMDs) monolayers modifies the effective defect energy levels and thereby the transport and energy dynamics of excitons. In this work, we study this effect in WSe2 monolayers for different combinations of surrounding dielectric media. Specifically, we study the source of the anomalous diffusion of excitons in the WSe2 monolayer and attribute the anomaly to the modification of the energy distribution of defect states in different disordered dielectric environments. We use this insight to manipulate exciton transport by engineering the dielectric environment using a graphene/hexagonal boron nitride (h-BN) moiré superlattice. Finally, we observe that the effect of dielectric disorder is even more significant at high excitation fluences, contributing to the nonequilibrium phonon drag effect. These results provide an important step toward achieving control over the exciton energy transport for next-generation opto-excitonic devices.


Assuntos
Grafite , Elementos de Transição , Difusão , Fônons , Semicondutores
2.
ACS Nano ; 15(7): 12334-12341, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34181857

RESUMO

We investigate the interaction of excitons in monolayer WSe2 with the piezoelectric field of surface acoustic wave (SAW) at room temperature using photoluminescence (PL) spectroscopy and report a large in-plane exciton polarizability of 8.43 ± 0.18 × 10-6 Dm/V. Such large polarizability arises due to the strong dielectric screening from the piezoelectric substrate. In addition, we show that the exciton-piezoelectric field interaction and population distribution between neutral excitons and trions can be optically manipulated by controlling the field screening using photogenerated free carriers. Finally, we model the broadening of the exciton PL line width and report that the interaction is dominated by type-II band edge modulation, because of the in-plane electric field in the system. The results help understand the interaction of excitons in monolayer transition-metal dichalcogenides that will aid in controlled manipulation of excitonic properties for applications in sensing, detection, and on-chip communication.

3.
ACS Nano ; 15(1): 1539-1547, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33417424

RESUMO

A moiré superlattice formed by stacking two lattice mismatched transition metal dichalcogenide monolayers, functions as a diffusion barrier that affects the energy transport and dynamics of interlayer excitons (electron and hole spatially concentrated in different monolayers). In this work, we experimentally quantify the diffusion barrier experienced by interlayer excitons in hexagonal boron nitride-encapsulated molybdenum diselenide/tungsten diselenide (MoSe2/WSe2) heterostructures with different twist angles. We observe the localization of interlayer excitons at low temperature and the temperature-activated diffusivity as a function of twist angle and hence attribute it to the deep periodic potentials arising from the moiré superlattice. We further support the observations with theoretical calculations, Monte Carlo simulations, and a three-level model that represents the exciton dynamics at various temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...