Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 3(5): 415-424, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28573203

RESUMO

Organic glass films formed by physical vapor deposition exhibit enhanced stability relative to those formed by conventional liquid cooling and aging techniques. Recently, experimental and computational evidence has emerged indicating that the average molecular orientation can be tuned by controlling the substrate temperature at which these "stable glasses" are grown. In this work, we present a comprehensive all-atom simulation study of ethylbenzene, a canonical stable-glass former, using a computational film formation procedure that closely mimics the vapor deposition process. Atomistic studies of experimentally formed vapor-deposited glasses have not been performed before, and this study therefore begins by verifying that the model and method utilized here reproduces key structural features observed experimentally. Having established agreement between several simulated and experimental macroscopic observables, simulations are used to examine the substrate temperature dependence of molecular orientation. The results indicate that ethylbenzene glasses are anisotropic, depending upon substrate temperature, and that this dependence can be understood from the orientation present at the surface of the equilibrium liquid. By treating ethylbenzene as a simple model for molecular semiconducting materials, a quantum-chemical analysis is then used to show that the vapor-deposited glasses exhibit decreased energetic disorder and increased magnitude of the mean-squared transfer integral relative to isotropic, liquid-cooled films, an effect that is attributed to the anisotropic ordering of the molecular film. These results suggest a novel structure-function simulation strategy capable of tuning the electronic properties of organic semiconducting glasses prior to experimental deposition, which could have considerable potential for organic electronic materials design.

2.
Nat Commun ; 7: 13062, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762262

RESUMO

Glass films prepared by a process of physical vapour deposition have been shown to have thermodynamic and kinetic stability comparable to those of ordinary glasses aged for thousands of years. A central question in the study of vapour-deposited glasses, particularly in light of new knowledge regarding anisotropy in these materials, is whether the ultra-stable glassy films formed by vapour deposition are ever equivalent to those obtained by liquid cooling. Here we present a computational study of vapour deposition for a two-dimensional glass forming liquid using a methodology, which closely mimics experiment. We find that for the model considered here, structures that arise in vapour-deposited materials are statistically identical to those observed in ordinary glasses, provided the two are compared at the same inherent structure energy. We also find that newly deposited hot molecules produce cascades of hot particles that propagate far into the film, possibly influencing the relaxation of the material.

3.
Soft Matter ; 12(27): 5898-904, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27334679

RESUMO

Glasses produced via physical vapor deposition can display greater kinetic stability and lower enthalpy than glasses prepared by liquid cooling. While the reduced enthalpy has often been used as a measure of the stability, it is not obvious whether dynamic measures of stability provide the same view. Here, we study dynamics in vapor-deposited and liquid-cooled glass films using molecular simulations of a bead-spring polymer model as well as a Lennard-Jones binary mixture in two and three dimensions. We confirm that the dynamics in vapor-deposited glasses is indeed slower than in ordinary glasses. We further show that the inherent structure energy is a good reporter of local dynamics, and that aged systems and glasses prepared by cooling at progressively slower rates exhibit the same behavior as vapor-deposited materials when they both have the same inherent structure energy. These findings suggest that the stability inferred from measurements of the energy is also manifested in dynamic observables, and they strengthen the view that vapor deposition processes provide an effective strategy for creation of stable glasses.

4.
J Chem Phys ; 143(9): 094502, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26342372

RESUMO

Enhanced kinetic stability of vapor-deposited glasses has been established for a variety of glass organic formers. Several recent reports indicate that vapor-deposited glasses can be orientationally anisotropic. In this work, we present results of extensive molecular simulations that mimic a number of features of the experimental vapor deposition process. The simulations are performed on a generic coarse-grained model and an all-atom representation of N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), a small organic molecule whose vapor-deposited glasses exhibit considerable orientational anisotropy. The coarse-grained model adopted here is found to reproduce several key aspects reported in experiments. In particular, the molecular orientation of vapor-deposited glasses is observed to depend on substrate temperature during deposition. For a fixed deposition rate, the molecular orientation in the glasses changes from isotropic, at the glass transition temperature, Tg, to slightly normal to the substrate at temperatures just below Tg. Well below Tg, molecular orientation becomes predominantly parallel to the substrate. The all-atom model is used to confirm some of the equilibrium structural features of TPD interfaces that arise above the glass transition temperature. We discuss a mechanism based on distinct orientations observed at equilibrium near the surface of the film, which get trapped within the film during the non-equilibrium process of vapor deposition.

5.
Proc Natl Acad Sci U S A ; 112(14): 4227-32, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831545

RESUMO

Physical vapor deposition is commonly used to prepare organic glasses that serve as the active layers in light-emitting diodes, photovoltaics, and other devices. Recent work has shown that orienting the molecules in such organic semiconductors can significantly enhance device performance. We apply a high-throughput characterization scheme to investigate the effect of the substrate temperature (Tsubstrate) on glasses of three organic molecules used as semiconductors. The optical and material properties are evaluated with spectroscopic ellipsometry. We find that molecular orientation in these glasses is continuously tunable and controlled by Tsubstrate/Tg, where Tg is the glass transition temperature. All three molecules can produce highly anisotropic glasses; the dependence of molecular orientation upon substrate temperature is remarkably similar and nearly independent of molecular length. All three compounds form "stable glasses" with high density and thermal stability, and have properties similar to stable glasses prepared from model glass formers. Simulations reproduce the experimental trends and explain molecular orientation in the deposited glasses in terms of the surface properties of the equilibrium liquid. By showing that organic semiconductors form stable glasses, these results provide an avenue for systematic performance optimization of active layers in organic electronics.

6.
J Chem Phys ; 140(20): 204504, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24880298

RESUMO

We have investigated the properties of vapor-deposited glasses prepared from short polymer chains using molecular dynamics simulations. Vapor-deposited polymer glasses are found to have higher density and higher kinetic stability than ordinary glasses prepared by gradual cooling of the corresponding equilibrium liquid. In contrast to results for binary Lennard-Jones glasses, the deposition rate is found to play an important role in the stability of polymer vapor-deposited glasses. Glasses deposited at the slowest deposition rate and at the optimal substrate temperature are found to correspond to the ordinary glasses that one could hypothetically prepare by cooling the liquid at rates that are 4-5 orders of magnitude slower than those accessible in the current simulations. For intermediate-length polymer chains, the resulting vapor-deposited glasses are found to be highly anisotropic. For short chains, however, the glasses are isotropic, showing that structural anisotropy is not a necessary condition for formation of stable glasses by physical vapor deposition.


Assuntos
Anisotropia , Vidro/química , Polímeros/química , Gases , Cinética , Simulação de Dinâmica Molecular , Propriedades de Superfície , Termodinâmica
7.
J Chem Phys ; 139(14): 144505, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24116633

RESUMO

A growing body of experimental work indicates that physical vapor deposition provides an effective route for preparation of stable glasses, whose properties correspond in some cases to those expected for glasses that have been aged for thousands of years. In this work, model binary glasses are prepared in a process inspired by physical vapor deposition, in which particles are sequentially added to the free surface of a growing film in molecular dynamics simulations. The resulting glasses are shown to be more stable than those prepared by gradual cooling from the liquid phase. However, it is also shown that the composition of the resulting glass, which is difficult to control in physical vapor deposition simulations of thin films, plays a significant role on the physical characteristics of the material. That composition dependence leads to a re-evaluation of previous results from simulations of thinner films than those considered here, where the equivalent age of the corresponding glasses was overestimated. The simulations presented in this work, which correspond to films that are approximately 38 molecular diameters thick, also enable analysis of the devitrification mechanism by which vapor-deposited glasses transform into the supercooled liquid. Consistent with experiments, it is found that this mechanism consists of a mobility front that propagates from the free interface into the interior of the films. Eliminating surface mobility eliminates this route of transformation into the supercooled liquid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...