Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732258

RESUMO

Since the discovery of the neuron-specific protein by Moore and McGregor in 1965, tens of thousands of studies have investigated the basic and applied significance of neuron-specific enolase (NSE). This promising biomarker, according to many researchers, has not found widespread use in clinical practice, particularly in acute cerebrovascular accidents. Moreover, the several studies refuting the usefulness of serum NSE measurement in critically ill patients leads us to consider the reasons for such contradictory conclusions. In this article, we have analyzed the main directions in the study of NSE and expressed our perspective on the reasons for the contradictory results and the difficulties in implementing the results of these studies in clinical practice. In our opinion, the method of the enzyme-linked immunosorbent assay (ELISA) used in the majority of the studies is inappropriate for the evaluation of NSE as a marker of central nervous system damage, because it does not allow for the differentiation of heterodimers of enolases and the assessment of the enzymatic activity of this group of enzymatic proteins. Therefore, the methodological approach for the evaluation of NSE (γγ-enolase) as a biomarker needs to be elaborated and improved. Furthermore, the specificity of the applied research methods and the appropriateness of the continued use of the term "neuron-specific enolase" must be addressed.


Assuntos
Biomarcadores , Fosfopiruvato Hidratase , Fosfopiruvato Hidratase/sangue , Humanos , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Animais
2.
Biomedicines ; 12(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540249

RESUMO

This is the first in vivo study to investigate the neuroprotective effects of krypton on focal cerebral ischemia. The aim of the study was to analyze the effect of 2 h of inhalation of a krypton-oxygen mixture (Kr 70%/O2 30%) on the recovery of neurological functions and the degree of brain damage in rats after photoinduced ischemic stroke (PIS) and to investigate the possible mechanisms responsible for this neuroprotection. Experiments were performed on male Wistar rats weighing 250-300 g (n = 32). Animals were randomized into four groups. Two groups (n = 20) underwent photoinduced ischemic stroke, followed by 2 h of inhalation of krypton-oxygen mixture consisting of Kr 70%/O2 30% or a nitrogen-oxygen breathing mixture consisting of N2 70%/O2 30%, followed by neurological examinations on days 3 and 7. The other two groups (n = 12) received only gas mixtures of the same concentration and exposure duration as in those in the PIS groups, then Western blot analysis of the potential molecular mechanisms was performed. The results of the study show that treatment with the krypton-oxygen mixture consisting of Kr 70%/O2 30% improves the neurological status on day 7 of observation, reduces the lesion volume according to the MRI examination and the number of Iba-1- and caspase-3-positive cells in the damaged area, promotes the activation of neoangiogenesis (an increase in the von Willebrand factor), and reduces the penumbra area and the number of NeuN-positive cells in it on day 14 of observation. Inhalation of the krypton-oxygen mixture also significantly increases the levels of phosphorylated AKT kinase (protein kinase B) and glycogen synthase kinase 3b (pGSK3b) and promotes the expression of transcription factor Nrf2, which was accompanied by the lowered expression of transcription factor NFkB (p50). Thus, we showed pronounced neuroprotection induced by krypton inhalation after stroke and identified the signaling pathways that may be responsible for restoring neurological functions and reducing damage.

3.
Biomedicines ; 11(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239078

RESUMO

Despite the enormous interest in COVID-19, there is no clear understanding of the mechanisms underlying the neurological symptoms in COVID-19. Microglia have been hypothesized to be a potential mediator of the neurological manifestations associated with COVID-19. In most existing studies to date, morphological changes in internal organs, including the brain, are considered in isolation from clinical data and defined as a consequence of COVID-19. We performed histological immunohistochemical (IHC) studies of brain autopsy materials of 18 patients who had died from COVID-19. We evaluated the relationship of microglial changes with the clinical and demographic characteristics of the patients. The results revealed neuronal alterations and circulatory disturbances. We found an inverse correlation between the integral density Iba-1 (microglia/macrophage-specific marker) IHC staining and the duration of the disease (R = -0.81, p = 0.001), which may indicate a reduced activity of microglia and do not exclude their damage in the long-term course of COVID-19. The integral density of Iba-1 IHC staining was not associated with other clinical and demographic factors. We observed a significantly higher number of microglial cells in close contact with neurons in female patients, which confirms gender differences in the course of the disease, indicating the need to study the disease from the standpoint of personalized medicine.

4.
Curr Issues Mol Biol ; 44(10): 4888-4901, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36286047

RESUMO

Vascular endothelial growth factors (VEGFs) are important regulators of angiogenesis, neuroprotection, and neurogenesis. Studies have indicated the association of VEGF dysregulation with the development of neurodegenerative and cerebrovascular diseases. We studied the changes in serum levels of VEGF-A, VEGFR-1, and VEGFR-2 in patients at various phases of ischemic and hemorrhagic strokes. Quantitative assessment of VEGF-A, VEGFR-1, and VEGFR-2 in serum of patients with hemorrhagic or ischemic stroke was performed by enzyme immunoassay in the hyper-acute (1−24 h from the onset), acute (up to 1−7 days), and early subacute (7 days to 3 months) phases of stroke, and then compared with the control group and each other. Results of our retrospective study demonstrated different levels of VEGF-A and its receptors at various phases of ischemic and hemorrhagic strokes. In ischemic stroke, increased VEGFR-2 level was found in the hyper-acute (p = 0.045) and acute phases (p = 0.024), while elevated VEGF-A and reduced VEGFR-1 levels were revealed in the early subacute phase (p = 0.048 and p = 0.012, respectively). In hemorrhagic stroke, no significant changes in levels of VEGF-A and its receptors were identified in the hyper-acute phase. In the acute and early subacute phases there was an increase in levels of VEGF-A (p < 0.001 and p = 0.006, respectively) and VEGFR-2 (p < 0.001 and p = 0.012, respectively). Serum levels of VEGF-A and its receptors in patients with hemorrhagic and ischemic stroke indicate different pathogenic pathways depending on the phase of the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...