Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(30): e2303622, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37626451

RESUMO

The chemical interaction of Sn with H2 by X-ray diffraction methods at pressures of 180-210 GPa is studied. A previously unknown tetrahydride SnH4 with a cubic structure (fcc) exhibiting superconducting properties below TC  = 72 K is obtained; the formation of a high molecular C2/m-SnH14 superhydride and several lower hydrides, fcc SnH2 , and C2-Sn12 H18 , is also detected. The temperature dependence of critical current density JC (T) in SnH4 yields the superconducting gap 2Δ(0) = 21.6 meV at 180 GPa. SnH4 has unusual behavior in strong magnetic fields: B,T-linear dependences of magnetoresistance and the upper critical magnetic field BC2 (T) ∝ (TC - T). The latter contradicts the Wertheimer-Helfand-Hohenberg model developed for conventional superconductors. Along with this, the temperature dependence of electrical resistance of fcc SnH4 in non-superconducting state exhibits a deviation from what is expected for phonon-mediated scattering described by the Bloch-Grüneisen model and is beyond the framework of the Fermi liquid theory. Such anomalies occur for many superhydrides, making them much closer to cuprates than previously believed.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 3 Pt 2): 546-556, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35702971

RESUMO

The crystal structure of samarium iron borate was analyzed with regard to growth conditions and temperature. The inclusion of about 7% Bi atoms in the crystals grown using the Bi2Mo3O12-based flux was discovered and there were no impurities in the crystals grown using the Li2WO4-based flux. No pronounced structural features associated with Bi inclusion were observed. The different absolute configurations of the samples grown using both fluxes were demonstrated. Below 80 K, a negative thermal expansion of the c unit-cell parameter was found. The structure of (Sm0.93Bi0.07)Fe3(BO3)4 belongs to the trigonal space group R32 in the temperature range 90-400 K. A decrease in the (Sm,Bi)-O, Sm-B, Sm-Fe, Fe-O, Fe-B and Fe-Fe distances is observed with a lowering of the temperature, B1-O does not change, B2-O increases slightly and the B2O3 triangles deviate from the ab plane. The strongest decrease in the equivalent isotropic atomic displacement parameters (Ueq) with decreasing temperature is observed for atoms Sm and O2, and the weakest is observed for B1. The O2 atoms have the highest Ueq values, the most elongated atomic displacement ellipsoids of all the atoms and the smallest number of allowed vibrational modes of all the O atoms. The largest number of allowed vibrational modes and the strongest interactions with neighbouring atoms is seen for the B atoms, and the opposite is seen for the Sm atoms. The quadrupole splitting Δ(T) of the paramagnetic Mössbauer spectra increases linearly with cooling. The Néel temperature [TN = 31.93 (5) K] was determined from the temperature dependence of the hyperfine magnetic field Bhf(T), which has a non-Brillouin character. The easy-plane long-range magnetic ordering below TN was confirmed.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35129115

RESUMO

Neodymium iron borate NdFe3(BO3)4 is an intensively studied multiferroic with high electric polarization values controlled by a magnetic field. It is characterized by a large quadratic magnetoelectric effect, rigidity in the base plane and a rather strong piezoelectric effect. In this work, the atomic structure of (Nd0.91Bi0.09)Fe3(BO3)4 was studied by single-crystal X-ray diffraction in the temperature range 20-500 K (space group R32, Z = 3). The Bi atoms found in the composition partially substitute the Nd atoms in the 3a position; they entered the structure due to the growth conditions in the presence of Bi2Mo3O12. It was shown that in the temperature range 20-500 K there is no structural phase transition R32→P3121, which occurs in rare-earth iron borates (RE = Eu-Er, Y) with an effective rare-earth cation radius smaller than that of Nd. The temperature dependence of the unit-cell c parameter reveals a slight increase on cooling below 90 K, which is similar to the results obtained previously for iron borates of Gd, Y and Ho. The atomic distances (Nd,Bi)-O, (Nd,Bi)-B, (Nd,Bi)-Fe, Fe-O, Fe-B and Fe-Fe in the iron chains and between chains decrease steadily with decreasing temperature from 500 to 90 K, whereas the B1(3b)-O distance does not change and the average B2(9e)-O distance increases slightly. There is a uniform decrease in the atomic displacement parameters with decreasing temperature, with a more pronounced decrease for the Nd(3a) and O2(9e) atoms. The O2(9e) atoms are characterized by the maximum atomic displacement parameters and the most elongated atomic displacement ellipsoids. The characteristic Debye and Einstein temperatures, and the static component in the atomic displacements were determined for cations using multi-temperature diffraction data. It was shown that the Nd cations have the weakest bonds with the surrounding atoms and the B cations have the strongest.


Assuntos
Bismuto , Ferro , Cristalografia por Raios X , Neodímio , Temperatura
4.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 6): 1100-1108, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33289721

RESUMO

High-quality Fe1-xGaxBO3 single crystals (0.0 ≤ x ≤ 1.0) in the form of basal plates were synthesized by the flux technique. The exact content of Fe and Ga and homogeneity of their distribution in the crystal structure were determined by energy-dispersive X-ray spectroscopy. The crystal structure was refined using single-crystal X-ray diffraction data. The electronic and magnetic properties were studied using Mössbauer spectroscopy. It is shown that even a small content of diamagnetic gallium leads to a rearrangement of the crystal structure and essentially changes the magnetic hyperfine parameters of the crystals.

5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 6): 954-968, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830675

RESUMO

An accurate single-crystal X-ray diffraction study of bismuth-containing HoFe3(BO3)4 between 11 and 500 K has revealed structural phase transition at Tstr = 365 K. The Bi atoms enter the composition from Bi2Mo3O12-based flux during crystal growth and significantly affect Tstr. The content of Bi was estimated by two independent methods, establishing the composition as (Ho0.96Bi0.04)Fe3(BO3)4. In the low-temperature (LT) phase below Tstr the (Ho0.96Bi0.04)Fe3(BO3)4 crystal symmetry is trigonal, of space group P3121, whereas at high temperature (HT) above 365 K the symmetry increases to space group R32. There is a sharp jump of oxygen O1 (LT) and O2 (LT) atomic displacement parameters (ADP) at Tstr. O1 and O2 ADP ellipsoids are the most elongated over 90-500 K. In space group R32 specific distances decrease steadily or do not change with decreasing temperature. In space group P3121 the distortion of the polyhedra Ho(Bi)O6, Fe1O6 and Fe2O6, B2O3 and B3O3 increases with decreasing temperature, whereas the triangles B1O3 remain almost equilateral. All BO3 triangles deviate from the ab plane with decreasing temperature. Fe-Fe distances in Fe1 chains decrease, while distances in Fe2 chains increase with decreasing temperature. The Mössbauer study confirms that the FeO6 octahedra undergo complex dynamic distortions. However, all observed distortions are rather small, and the general change in symmetry during the structural phase transition has very little influence on the local environment of iron in oxygen octahedra. The Mössbauer spectra do not distinguish two structurally different Fe1 and Fe2 positions in the LT phase. The characteristic temperatures of cation thermal vibrations were calculated using X-ray diffraction and Mössbauer data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...