Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617331

RESUMO

Recombination breaks down genetic linkage by reshuffling existing variants onto new genetic backgrounds. These dynamics are traditionally quantified by examining the correlations between alleles, and how they decay as a function of the recombination rate. However, the magnitudes of these correlations are strongly influenced by other evolutionary forces like natural selection and genetic drift, making it difficult to tease out the effects of recombination. Here we introduce a theoretical framework for analyzing an alternative family of statistics that measure the homoplasy produced by recombination. We derive analytical expressions that predict how these statistics depend on the rates of recombination and recurrent mutation, the strength of negative selection and genetic drift, and the present-day frequencies of the mutant alleles. We find that the degree of homoplasy can strongly depend on this frequency scale, which reflects the underlying timescales over which these mutations occurred. We show how these scaling properties can be used to isolate the effects of recombination, and discuss their implications for the rates of horizontal gene transfer in bacteria.

2.
J Phys Chem B ; 118(33): 9909-18, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24986456

RESUMO

As plasma membranes of animal cells are known to be asymmetric, the transmembrane lipid asymmetry, being essential for many membranes' properties and functions, should be properly accounted for in model membrane systems. In this paper, we employ atomic-scale molecular dynamics simulations to explore electroporation phenomena in asymmetric model membranes comprised of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipid monolayers that mimic the outer and inner leaflets of plasma membranes, respectively. Our findings clearly demonstrate that the molecular mechanism of electroporation in asymmetric phospholipid membranes differs considerably from the picture observed for their single-component symmetric counterparts: The initial stages of electric-field-induced formation of a water-filled pore turn out to be asymmetric and occur mainly on the PC side of the PC/PE membrane. In particular, water molecules penetrate in the membrane interior mostly from the PC side, and the reorientation of lipid head groups, being crucial for stabilizing the hydrophilic pore, also takes place in the PC leaflet. In contrast, the PE lipid head groups do not enter the central region of the membrane until the water pore becomes rather large and partly stabilized by PC head groups. Such behavior implies that the PE leaflet is considerably more robust against an electric field most likely due to interlipid hydrogen bonding. We also show that an electric field induces asymmetric changes in the lateral pressure profile of PC/PE membranes, decreasing the cohesion between lipid molecules predominantly in the PC membrane leaflet. Overall, our simulations provide compelling evidence that the transmembrane lipid asymmetry can be essential for understanding electroporation phenomena in living cells.


Assuntos
Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Lipossomas Unilamelares/química , Animais , Eletricidade , Eletroporação , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...