Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 18(6): 710-724, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32772500

RESUMO

It has been argued that skeletal Mg/Ca ratio in echinoderms is mostly governed by Mg2+ and Ca2+ concentrations in the ambient seawater. Accordingly, well-preserved fossil echinoderms were used to reconstruct Phanerozoic seawater Mg2+ /Ca2+ ratio. However, Mg/Ca ratio in echinoderm skeleton can be affected by a number of environmental and physiological factors, the effects of which are still poorly understood. Notably, experimental data supporting the applicability of echinoderms in paleoenvironmental reconstructions remain limited. Here, we investigated the effect of ambient Mg2+ /Ca2+ seawater ratio and diet on skeletal Mg/Ca ratio and growth rate in two echinoid species (Psammechinus miliaris and Prionocidaris baculosa). Sea urchins were tagged with manganese and then cultured in different Mg2+ /Ca2+ conditions to simulate fluctuations in the Mg2+ /Ca2+ seawater ratios in the Phanerozoic. Simultaneously, they were fed on a diet containing different amounts of magnesium. Our results show that the skeletal Mg/Ca ratio in both species varied not only between ossicle types but also between different types of stereom within a single ossicle. Importantly, the skeletal Mg/Ca ratio in both species decreased proportionally with decreasing seawater Mg2+ /Ca2+ ratio. However, sea urchins feeding on Mg-enriched diet produced a skeleton with a higher Mg/Ca ratio. We also found that although incubation in lower ambient Mg2+ /Ca2+ ratio did not affect echinoid respiration rates, it led to a decrease or inhibition of their growth. Overall, these results demonstrate that although skeletal Mg/Ca ratios in echinoderms can be largely determined by seawater chemistry, the type of diet may also influence skeletal geochemistry, which imposes constraints on the application of fossil echinoderms as a reliable proxy. The accuracy of paleoseawater Mg2+ /Ca2+ calculations is further limited by the fact that Mg partition coefficients vary significantly at different scales (between species, specimens feeding on different types of food, different ossicle types, and stereom types within a single ossicle).


Assuntos
Biomineralização , Equinodermos , Fósseis , Animais , Dieta , Ouriços-do-Mar , Água do Mar
2.
Sci Total Environ ; 745: 140878, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32721612

RESUMO

Molluscs defend themselves against predation and environmental stressors through the possession of mineralized shells. Mussels are widely used to predict the effects of abiotic factors such as salinity and pH on marine calcifiers in the context of changing ocean conditions. Shell matrix proteins are part of the molecular control regulating the biomineralization processes underpinning shell production. Under changing environmental conditions, differential expression of these proteins leads to the phenotypic plasticity of shells seen in many mollusc species. Low salinity decreases the availability of calcium and inorganic carbon in seawater and consequently energetic constraints often lead to thin, small and fragile shells in Mytilid mussels inhabiting Baltic Sea. To understand how the modulation of shell matrix proteins alters biomineralization, we compared the shell proteomes of mussels living under full marine conditions in the North Sea to those living in the low saline Baltic Sea. Modulation of proteins comprising the Mytilus biomineralization tool kit is observed. These data showed a relative increase in chitin related proteins, decrease in SD-rich, GA-rich shell matrix proteins indicating that altered protein scaffolding and mineral nucleation lead to impaired shell microstructures influencing shell resistance in Baltic Mytilid mussels. Interestingly, proteins with immunity domains in the shell matrix are also found to be modulated. Shell traits such as periostracum thickness, organic content and fracture resistance qualitatively correlates with the modulation of SMPs in Mytilid mussels providing key insights into control of biomineralization at molecular level in the context of changing marine conditions.


Assuntos
Exoesqueleto , Proteoma , Animais , Concentração de Íons de Hidrogênio , Mar do Norte , Água do Mar
4.
Ecol Evol ; 9(21): 12128-12143, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31832148

RESUMO

Ocean warming (OW) and acidification (OA) are intensively investigated as they pose major threats to marine organism. However, little effort is dedicated to another collateral climate change stressor, the increased frequency, and intensity of storm events, here referred to as intensified hydrodynamics. A 2-month experiment was performed to identify how OW and OA (temperature: 21°C; pHT: 7.7, 7.4; control: 17°C-pHT7.9) affect the resistance to hydrodynamics in the sea urchin Paracentrotus lividus using an integrative approach that includes physiology, biomechanics, and behavior. Biomechanics was studied under both no-flow condition at the tube foot (TF) scale and flow condition at the individual scale. For the former, TF disk adhesive properties (attachment strength, tenacity) and TF stem mechanical properties (breaking force, extensibility, tensile strength, stiffness, toughness) were evaluated. For the latter, resistance to flow was addressed as the flow velocity at which individuals detached. Under near- and far-future OW and OA, individuals fully balanced their acid-base status, but skeletal growth was halved. TF adhesive properties were not affected by treatments. Compared to the control, mechanical properties were in general improved under pHT7.7 while in the extreme treatment (21°C-pHT7.4) breaking force was diminished. Three behavioral strategies were implemented by sea urchins and acted together to cope with flow: improving TF attachment, streamlining, and escaping. Behavioral responses varied according to treatment and flow velocity. For instance, individuals at 21°C-pHT7.4 increased the density of attached TF at slow flows or controlled TF detachment at fast flows to compensate for weakened TF mechanical properties. They also showed an absence of streamlining favoring an escaping behavior as they ventured in a riskier faster movement at slow flows. At faster flows, the effects of OW and OA were detrimental causing earlier dislodgment. These plastic behaviors reflect a potential scope for acclimation in the field, where this species already experiences diel temperature and pH fluctuations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...