Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Soil ; 479(1-2): 159-183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36398064

RESUMO

Background and aims: The quantitative retrieval of soil organic carbon (SOC) storage, particularly for soils with a large potential for carbon sequestration, is of global interest due to its link with the carbon cycle and the mitigation of climate change. However, complex ecosystems with good soil qualities for SOC storage are poorly studied. Methods: The interrelation between SOC and various vegetation remote sensing drivers is understood to demonstrate the link between the carbon stored in the vegetation layer and SOC of the top soil layers. Based on the mapping of SOC in two horizons (0-30 cm and 30-60 cm) we predict SOC with high accuracy in the complex and mountainous heterogeneous páramo system in Ecuador. A large SOC database (in weight % and in Mg/ha) of 493 and 494 SOC sampling data points from 0-30 cm and 30-60 cm soil profiles, respectively, were used to calibrate GPR models using Sentinel-2 and GIS predictors (i.e., Temperature, Elevation, Soil Taxonomy, Geological Unit, Slope Length and Steepness (LS Factor), Orientation and Precipitation). Results: In the 0-30 cm soil profile, the models achieved a R2 of 0.85 (SOC%) and a R2 of 0.79 (SOC Mg/ha). In the 30-60 cm soil profile, models achieved a R2 of 0.86 (SOC%), and a R2 of 0.79 (SOC Mg/ha). Conclusions: The used Sentinel-2 variables (FVC, CWC, LCC/Cab, band 5 (705 nm) and SeLI index) were able to improve the estimation accuracy between 3-21% compared to previous results of the same study area. CWC emerged as the most relevant biophysical variable for SOC prediction. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-022-05506-1.

3.
Carbon Balance Manag ; 16(1): 32, 2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34693465

RESUMO

BACKGROUND: Soil organic carbon (SOC) affects essential biological, biochemical, and physical soil functions such as nutrient cycling, water retention, water distribution, and soil structure stability. The Andean páramo known as such a high carbon and water storage capacity ecosystem is a complex, heterogeneous and remote ecosystem complicating field studies to collect SOC data. Here, we propose a multi-predictor remote quantification of SOC using Random Forest Regression to map SOC stock in the herbaceous páramo of the Chimborazo province, Ecuador. RESULTS: Spectral indices derived from the Landsat-8 (L8) sensors, OLI and TIRS, topographic, geological, soil taxonomy and climate variables were used in combination with 500 in situ SOC sampling data for training and calibrating a suitable predictive SOC model. The final predictive model selected uses nine predictors with a RMSE of 1.72% and a R2 of 0.82 for SOC expressed in weight %, a RMSE of 25.8 Mg/ha and a R2 of 0.77 for the model in units of Mg/ha. Satellite-derived indices such as VARIG, SLP, NDVI, NDWI, SAVI, EVI2, WDRVI, NDSI, NDMI, NBR and NBR2 were not found to be strong SOC predictors. Relevant predictors instead were in order of importance: geological unit, soil taxonomy, precipitation, elevation, orientation, slope length and steepness (LS Factor), Bare Soil Index (BI), average annual temperature and TOA Brightness Temperature. CONCLUSIONS: Variables such as the BI index derived from satellite images and the LS factor from the DEM increase the SOC mapping accuracy. The mapping results show that over 57% of the study area contains high concentrations of SOC, between 150 and 205 Mg/ha, positioning the herbaceous páramo as an ecosystem of global importance. The results obtained with this study can be used to extent the SOC mapping in the whole herbaceous ecosystem of Ecuador offering an efficient and accurate methodology without the need for intensive in situ sampling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...