Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985876

RESUMO

Herein, we carefully investigated the Fe3+ doping effects on the structure and electron distribution of Cr2O3 nanoparticles using X-ray diffraction analysis (XRD), maximum entropy method (MEM), and density functional theory (DFT) calculations. We showed that increasing the Fe doping induces an enlargement in the axial ratio of c/a, which is associated with an anisotropic expansion of the unit cell. We found that as Fe3+ replaces Cr in the Cr2O3 lattice, it caused a higher interaction between the metal 3d states and the oxygen 2p states, which led to a slight increase in the Cr/Fe-O1 bond length followed by an opposite effect for the Cr/Fe-O2 bonds. Our results also suggest that the excitations characterize a well-localized bandgap region from occupied Cr d to unoccupied Fe d states. The Cr2O3 and Fe-doped Cr2O3 nanoparticles behave as Mott-Hubbard insulators due to their band gap being in the d-d gap, and Cr 3d orbitals dominate the conduction band. These findings suggest that the magnitude and the character of the electronic density near the O atom bonds in Cr2O3 nanoparticles are modulated by the Cr-Cr distances until its stabilization at the induced quasi-equilibrium of the Cr2O3 lattice when the Fe3+ doping values reaches the saturation level range.

2.
Materials (Basel) ; 15(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36363016

RESUMO

Iron niobates, pure and substituted with copper (Fe1-xCuxNbO4 with x = 0-0.15), were prepared by the solid-state method and characterized by X-ray diffraction, Raman spectroscopy, and magnetic measurements. The results of the structural characterizations revealed the high solubility of Cu ions in the structure and better structural stability compared to the pure sample. The analysis of the magnetic properties showed that the antiferromagnetic-ferromagnetic transition was caused by the insertion of Cu2+ ions into the FeNbO4 structure. The pure FeNbO4 structure presented an antiferromagnetic ordering state, with a Néel temperature of approximately 36.81K. The increase in substitution promoted a change in the magnetic ordering, with the state passing to a weak ferromagnetic order with a transition temperature (Tc) higher than the ambient temperature. The origin of the ferromagnetic ordering could be attributed to the increase in super-exchange interactions between Fe/Cu ions in the Cu2+-O-Fe3+ chains and the formation of bound magnetic polarons in the oxygen vacancies.

3.
Nanomaterials (Basel) ; 12(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014752

RESUMO

ZnO nanocrystals with three different morphologies have been synthesized via a simple sol-gel-based method using Brosimum parinarioides (bitter Amapá) and Parahancornia amapa (sweet Amapá) latex as chelating agents. X-ray diffraction (XRD) and electron diffraction patterns (SAED) patterns showed the ZnO nanocrystals were a pure hexagonal wurtzite phase of ZnO. XRD-based spherical harmonics predictions and HRTEM images depicted that the nanocrystallites constitute pitanga-like (~15.8 nm), teetotum-like (~16.8 nm), and cambuci-like (~22.2 nm) shapes for the samples synthesized using bitter Amapá, sweet Amapá, and bitter/sweet Amapá chelating agent, respectively. The band gap luminescence was observed at ~2.67-2.79 eV along with several structural defect-related, blue emissions at 468-474 nm (VO, VZn, Zni), green emissions positioned at 513.89-515.89 (h-VO+), and orange emission at 600.78 nm (VO+-VO++). The best MB dye removal efficiency (85%) was mainly ascribed to the unique shape and oxygen vacancy defects found in the teetotum-like ZnO nanocrystals. Thus, the bitter Amapá and sweet Amapá latex are effective chelating agents for synthesizing distinctive-shaped ZnO nanocrystals with highly defective and remarkable photocatalytic activity.

4.
Inorg Chem ; 60(7): 4475-4496, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33710867

RESUMO

Defect influences on the photoactivity of ZnO nanoparticles prepared by a powdered coconut water (ACP) assisted synthesis have been studied. The crystalline phase and morphology of ZnO nanoparticles were effectively controlled by adjusting the calcination temperature (400-700 °C). An induced transition of hybrid Zn5(CO3)2(OH)6/ZnO nanoparticles to single-phase ZnO nanoparticles was obtained at 480 °C. The morphological analysis revealed a formation of ZnO nanoparticles with semispherical (∼6.5 nm)- and rod-like (∼96 nm) shapes when the calcination temperatures were 400 and 700 °C, respectively. Photoluminescence characterizations revealed several defects types in the samples with VZn and VO+ being in the self-assembly of semispherical- and rod-like ZnO nanoparticles. The photocatalytic activity of the ZnO nanoparticles was examined by assessing the degradation of methylene blue in an aqueous solution under low-intensity visible-light irradiation (∼3 W m-2). The results point toward the self-assembly of semispherical- and rod-like ZnO nanoparticles that had significantly better photocatalytic activity (∼31%) in comparison to that of spherical-agglomerated- or near-spherical-like species within 120 min of irradiation. The possible photocatalytic mechanism is discussed in detail, and the morphology-driven intrinsic [VZn+VO+] defects are proposed to be among the active sites of the ZnO nanoparticles enhancing the photocatalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...