Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 45(1): 71-82, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16367955

RESUMO

Serine hydroxymethyltransferase (SHMT) is part of the mitochondrial enzyme complex catalysing the photorespiratory production of serine, ammonium and CO(2) from glycine. Potato plants (Solanum tuberosum cv. Solara) with antisensed SHMT were generated to investigate whether photorespiratory intermediates accumulated during light lead to nocturnal activation of the nitrogen-assimilating enzymes glutamine synthetase (GS) and glutamate synthase (GOGAT). The transformant lines contained 70-90% less SHMT protein, and exhibited a corresponding decrease in mitochondrial SHMT activity. SHMT antisense plants displayed lower photosynthetic capacity and accumulated glycine in light. Glycine was converted to serine in the second half of the light period, while serine, ammonium and glutamine showed an inverse diurnal rhythm and reached highest values in darkness. GS/GOGAT protein levels and activities in the transgenics also reached maximum levels in darkness. The diurnal displacement of NH(4)(+) assimilation was accompanied by a change in the subunit composition of GS(2), but not GS(1). It is concluded that internal accumulation of post-photorespiratory ammonium is leading to nocturnal activation of GS/GOGAT, and that the time shift in ammonia assimilation can constitute part of a strategy to survive photorespiratory impairment.


Assuntos
Ritmo Circadiano , Glicina Hidroximetiltransferase/metabolismo , Oligonucleotídeos Antissenso/genética , Folhas de Planta/metabolismo , Compostos de Amônio Quaternário/metabolismo , Solanum tuberosum/metabolismo , Aminoácidos/biossíntese , Dióxido de Carbono/metabolismo , Escuridão , Glicina Hidroximetiltransferase/genética , Solanum tuberosum/enzimologia , Solanum tuberosum/crescimento & desenvolvimento
2.
Phytochemistry ; 65(10): 1361-8, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15231409

RESUMO

Feeding of amino acids to hairy roots of the yellow beet (Beta vulgaris var. lutea) usually results in the formation of the respective betaxanthins. One exception is (S)-glutamate whose feeding leads to an increase in the betaxanthin vulgaxanthin I (glutamine as amino-acid moiety) instead of vulgaxanthin II (glutamate as amino-acid moiety). To elucidate this phenomenon, hairy roots were cultivated in modified standard medium and (S)-glutamate was fed. Under most nutrient conditions tested, glutamine and vulgaxanthin I in the tissue dominated over glutamate and vulgaxanthin II. Glutamate, opposed to glutamine, was readily metabolized so that its concentration was lower than that of glutamine. Maximum concentrations of glutamate were reached when the activity of glutamine synthetase was low. Even then, however, vulgaxanthin II stayed on a low level. In contrast, the level of vulgaxanthin I increased with increasing concentrations of glutamine in the tissue. Also 4-aminobutyric acid (GABA) was a major amino acid in the hairy roots. Its concentration reached maximum levels when (S)-glutamate, a GABA precursor, was fed, or when sucrose, the C source of the roots, was replaced by glucose. The respective GABA-betaxanthin, however, was hardly detectable. When both (S)-glutamate and glucose were supplied, the GABA concentration exceeded that of all other amino acids. Only then the GABA-betaxanthin could be characterized in small amounts. Interestingly, the level of the main betaxanthin, miraxanthin V, consisting of betalamic acid and dopamine, was most markedly reduced by a replacement of sucrose with glucose. We conclude that the reaction of betalamic acid with glutamate and GABA was considerably lower than with glutamine and dopamine, irrespective of the concentration of the amino acid in the tissue. Possible reasons will be discussed, also with respect to the occurrence of species-specific patterns of betaxanthins.


Assuntos
Aminoácidos/metabolismo , Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Ácidos Picolínicos/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo
3.
Physiol Plant ; 120(2): 220-228, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15032856

RESUMO

The metabolic, biochemical and molecular events occurring in the different leaf stages along the main axis of tobacco (Nicotiana tabacum) plants grown either on a nitrogen-rich medium, on a medium containing ammonium as sole nitrogen source or on a nitrogen-depleted medium, are presented. This study shows that the highest induction of cytosolic glutamine synthetase (GS1) protein and transcript occurs when nitrogen remobilization is maximal as the result of nitrogen starvation, whereas both glutamate dehydrogenase (GDH) transcript and activity remain at a very low level. In contrast, GDH is highly induced when plants are grown on ammonium as sole nitrogen source, a physiological situation during which leaf protein nitrogen remobilization is limited. It is therefore concluded that GDH does not play a direct role during the process of nitrogen remobilization but is rather induced following a built up of ammonium provided externally or released as the result of protein hydrolysis during natural leaf senescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...