Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 35(21)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36881912

RESUMO

The different superfluid phases of3He are described byp-wave order parameters that include anisotropy axes both in the orbital and spin spaces. The anisotropy axes characterize the broken symmetries in these macroscopically coherent quantum many-body systems. The systems' free energy has several degenerate minima for certain orientations of the anisotropy axes. As a result, spatial variation of the order parameter between two such regions, settled in different energy minima, forms a topological soliton. Such solitons can terminate in the bulk liquid, where the termination line forms a vortex with trapped circulation of mass and spin superfluid currents. Here we discuss possible soliton-vortex structures based on the symmetry and topology arguments and focus on the three structures observed in experiments: solitons bounded by spin-mass vortices in the B phase, solitons bounded by half-quantum vortices (HQVs) in the polar and polar-distorted A phases, and the composite defect formed by a half-quantum vortex, soliton and the Kibble-Lazarides-Shafi wall in the polar-distorted B phase. The observations are based on nuclear magnetic resonance (NMR) techniques and are of three types: first, solitons can form a potential well for trapped spin waves, observed as an extra peak in the NMR spectrum at shifted frequency; second, they can increase the relaxation rate of the NMR spin precession; lastly, the soliton can present the boundary conditions for the anisotropy axes in bulk, modifying the bulk NMR signal. Owing to solitons' prominent NMR signatures and the ability to manipulate their structure with external magnetic field, solitons have become an important tool for probing and controlling the structure and dynamics of superfluid3He, in particular HQVs with core-bound Majorana modes.

3.
Nat Commun ; 13(1): 3090, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654883

RESUMO

A time crystal is a macroscopic quantum system in periodic motion in its ground state. In our experiments, two coupled time crystals consisting of spin-wave quasiparticles (magnons) form a macroscopic two-level system. The two levels evolve in time as determined intrinsically by a nonlinear feedback, allowing us to construct spontaneous two-level dynamics. In the course of a level crossing, magnons move from the ground level to the excited level driven by the Landau-Zener effect, combined with Rabi population oscillations. We demonstrate that magnon time crystals allow access to every aspect and detail of quantum-coherent interactions in a single run of the experiment. Our work opens an outlook for the detection of surface-bound Majorana fermions in the underlying superfluid system, and invites technological exploitation of coherent magnon phenomena - potentially even at room temperature.

4.
Phys Rev Lett ; 127(11): 115702, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558928

RESUMO

The formation of topological defects in continuous phase transitions is driven by the Kibble-Zurek mechanism. Here we study the formation of single- and half-quantum vortices during transition to the polar phase of ^{3}He in the presence of a symmetry-breaking bias provided by the applied magnetic field. We find that vortex formation is suppressed exponentially when the length scale associated with the bias field becomes smaller than the Kibble-Zurek length. We thus demonstrate an experimentally feasible shortcut to adiabaticity-an important aspect for further understanding of phase transitions as well as for engineering applications such as quantum computers or simulators.

5.
Nat Mater ; 20(2): 171-174, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32807922

RESUMO

Quantum time crystals are systems characterized by spontaneously emerging periodic order in the time domain1. While originally a phase of broken time translation symmetry was a mere speculation2, a wide range of time crystals has been reported3-5. However, the dynamics and interactions between such systems have not been investigated experimentally. Here we study two adjacent quantum time crystals realized by two magnon condensates in superfluid 3He-B. We observe an exchange of magnons between the time crystals leading to opposite-phase oscillations in their populations-a signature of the AC Josephson effect6-while the defining periodic motion remains phase coherent throughout the experiment. Our results demonstrate that time crystals obey the general dynamics of quantum mechanics and offer a basis to further investigate the fundamental properties of these phases, opening pathways for possible applications in developing fields, such as quantum information processing.

6.
J Low Temp Phys ; 196(1): 82-101, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31274926

RESUMO

One of the most spectacular discoveries made in superfluid 3 He confined in a nanostructured material like aerogel or nafen was the observation of the destruction of the long-range orientational order by a weak random anisotropy. The quenched random anisotropy provided by the confining material strands produces several different glass states resolved in NMR experiments in the chiral superfluid 3 He-A and in the time-reversal-invariant polar phase. The smooth textures of spin and orbital order parameters in these glasses can be characterized in terms of the randomly distributed topological charges, which describe skyrmions, spin vortices and hopfions. In addition, in these skyrmion glasses the momentum-space topological invariants are randomly distributed in space. The Chern mosaic, Weyl glass, torsion glass and other exotic topological states are examples of close connections between the real-space and momentum-space topologies in superfluid 3 He phases in aerogel.

7.
Nat Commun ; 10(1): 237, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651558

RESUMO

Symmetries of the physical world have guided formulation of fundamental laws, including relativistic quantum field theory and understanding of possible states of matter. Topological defects (TDs) often control the universal behavior of macroscopic quantum systems, while topology and broken symmetries determine allowed TDs. Taking advantage of the symmetry-breaking patterns in the phase diagram of nanoconfined superfluid 3He, we show that half-quantum vortices (HQVs)-linear topological defects carrying half quantum of circulation-survive transitions from the polar phase to other superfluid phases with polar distortion. In the polar-distorted A phase, HQV cores in 2D systems should harbor non-Abelian Majorana modes. In the polar-distorted B phase, HQVs form composite defects-walls bounded by strings hypothesized decades ago in cosmology. Our experiments establish the superfluid phases of 3He in nanostructured confinement as a promising topological media for further investigations ranging from topological quantum computing to cosmology and grand unification scenarios.

8.
Phys Rev Lett ; 121(2): 025303, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085748

RESUMO

The polar phase of ^{3}He, which is topological spin-triplet superfluid with the Dirac nodal line in the spectrum of Bogoliubov quasiparticles, has been recently stabilized in a nanoconfined geometry. We pump magnetic excitations (magnons) into the sample of polar phase and observe how they form a Bose-Einstein condensate, revealed by coherent precession of the magnetization of the sample. Spin superfluidity, which supports this coherence, is associated with the spontaneous breaking of U(1) symmetry by the phase of precession. We observe the corresponding Nambu-Goldstone boson and measure its mass emerging when applied rf field violates the U(1) symmetry explicitly. We suggest that the magnon BEC in the polar phase is a powerful probe for topological objects such as vortices and solitons and topological nodes in the fermionic spectrum.

9.
Phys Rev Lett ; 117(25): 255301, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-28036220

RESUMO

One of the most sought-after objects in topological quantum-matter systems is a vortex carrying half a quantum of circulation. They were originally predicted to exist in superfluid ^{3}He-A but have never been resolved there. Here we report an observation of half-quantum vortices (HQVs) in the polar phase of superfluid ^{3}He. The vortices are created with rotation or by the Kibble-Zurek mechanism and identified based on their nuclear magnetic resonance signature. This discovery provides a pathway for studies of unpaired Majorana modes bound to the HQV cores in the polar-distorted A phase.

10.
Science ; 292(5520): 1326-9, 2001 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-11359000

RESUMO

The SWAN (Solar Wind ANisotropies) Lyman-alpha all-sky camera on the SOHO spacecraft observed the hydrogen coma of comet C/1999 S4 (LINEAR) from the end of May through mid-August 2000. A systematic set of water-production rates was obtained for this well-documented event of complete fragmentation of a cometary nucleus. The observations indicate that the lower limit for the sunlit surface area of the nucleus was about 1 square kilometer before the fragmentation and that the amount of water released throughout the observing period was 3.3 x 10(9) kilograms. Evidence suggests that the activity of the comet was dominated by successive fragmentation. There were four major outbursts, occurring about every 16 days. The 21 July event led to the complete fragmentation and sublimation of what remained of the nucleus, producing the last 3 x 10(8) kilograms of water. A model where the fragment size distribution follows the power law N(R) approximately R-(2.7), where N and R are the number and radius of fragments, reproduces the observed dissipation. This distribution possibly reflects the internal structure of the nucleus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...